Spaces:
Runtime error
Runtime error
print("Reinstalling mmcv") | |
import pip | |
pip.main(['uninstall', '-y', 'mmcv-full']) | |
pip.main(['install', 'mmcv-full==1.3.17', '--find-links', 'https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html']) | |
print("mmcv install complete") | |
from icevision.all import * | |
from icevision.models.checkpoint import * | |
import PIL | |
import gradio as gr | |
import os | |
# Load model | |
checkpoint_path = 'models/model_checkpoint.pth' | |
checkpoint_and_model = model_from_checkpoint(checkpoint_path) | |
model = checkpoint_and_model["model"] | |
model_type = checkpoint_and_model["model_type"] | |
class_map = checkpoint_and_model["class_map"] | |
# Transforms | |
img_size = checkpoint_and_model["img_size"] | |
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) | |
for root, dirs, files in os.walk(r'sample_images/'): | |
for filename in files: | |
print(filename) | |
examples = ["sample_images/"+file for file in files] | |
article="<p style='text-align: center'><a href='https://dicksonneoh.com/' target='_blank'>Blog post</a></p>" | |
enable_queue=True | |
#examples = [['sample_images/3.jpg']] | |
examples = [["sample_images/"+file] for file in files] | |
def show_preds(input_image, display_label, display_bbox, detection_threshold): | |
if detection_threshold==0: detection_threshold=0.5 | |
img = PIL.Image.fromarray(input_image, 'RGB') | |
pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold, | |
display_label=display_label, display_bbox=display_bbox, return_img=True, | |
font_size=16, label_color="#FF59D6") | |
return pred_dict['img'] | |
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) | |
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True) | |
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) | |
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold") | |
outputs = gr.outputs.Image(type="pil") | |
# Option 1: Get an image from local drive | |
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='Microalgae Detection', article=article, examples=examples) | |
# # Option 2: Grab an image from a webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) | |
# # Option 3: Continuous image stream from the webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) | |
gr_interface.launch(inline=False, share=True, debug=True) | |