Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
print("Reinstalling mmcv") | |
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "mmcv-full==1.3.17"]) | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "mmcv-full==1.3.17", "-f", "https://download.openmmlab.com/mmcv/dist/cpu/torch1.10.0/index.html"]) | |
print("mmcv install complete") | |
## Only works if we reinstall mmcv here. | |
from gradio.outputs import Label | |
from icevision.all import * | |
from icevision.models.checkpoint import * | |
import PIL | |
import gradio as gr | |
import os | |
# Load model | |
checkpoint_path = "models/model_checkpoint.pth" | |
checkpoint_and_model = model_from_checkpoint(checkpoint_path) | |
model = checkpoint_and_model["model"] | |
model_type = checkpoint_and_model["model_type"] | |
class_map = checkpoint_and_model["class_map"] | |
# Transforms | |
img_size = checkpoint_and_model["img_size"] | |
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) | |
for root, dirs, files in os.walk(r"sample_images/"): | |
for filename in files: | |
print("Loading sample image:", filename) | |
# Populate examples in Gradio interface | |
example_images = [["sample_images/" + file] for file in files] | |
# Columns: Input Image | Label | Box | Detection Threshold | |
#examples = [ | |
# [example_images[0], False, True, 0.5], | |
# [example_images[1], True, True, 0.5], | |
# [example_images[2], False, True, 0.7], | |
# [example_images[3], True, True, 0.7], | |
# [example_images[4], False, True, 0.5], | |
# [example_images[5], False, True, 0.5], | |
# [example_images[6], False, True, 0.6], | |
# [example_images[7], False, True, 0.6], | |
#] | |
examples = [['sample_images/IMG_20191212_151351.jpg'],['sample_images/IMG_20191212_153420.jpg'],['sample_images/IMG_20191212_154100.jpg']] | |
#def show_preds(input_image, display_label, display_bbox, detection_threshold): | |
def show_preds(input_image): | |
# if detection_threshold == 0: | |
#detection_threshold = 0.5 | |
img = PIL.Image.fromarray(input_image, "RGB") | |
pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.5, | |
display_label=False, display_bbox=True, return_img=True, | |
font_size=16, label_color="#FF59D6") | |
#pred_dict = model_type.end2end_detect( | |
# img, | |
# valid_tfms, | |
# model, | |
# class_map=class_map, | |
# detection_threshold=detection_threshold, | |
# display_label=display_label, | |
# display_bbox=display_bbox, | |
# return_img=True, | |
# font_size=16, | |
# label_color="#FF59D6", | |
#) | |
return pred_dict["img"], len(pred_dict["detection"]["bboxes"]) | |
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) | |
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=False) | |
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) | |
detection_threshold_slider = gr.inputs.Slider( | |
minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold" | |
) | |
outputs = [ | |
gr.outputs.Image(type="pil", label="RetinaNet Inference"), | |
gr.outputs.Textbox(type="number", label="Microalgae Count"), | |
] | |
article = "<p style='text-align: center'><a href='https://dicksonneoh.com/' target='_blank'>Blog post</a></p>" | |
# Option 1: Get an image from local drive | |
gr_interface = gr.Interface( | |
fn=show_preds, | |
inputs=[ | |
"image"#, | |
#display_chkbox_label, | |
#display_chkbox_box, | |
#detection_threshold_slider, | |
], | |
outputs=outputs, | |
title="Microalgae Detector with RetinaNet", | |
description="This RetinaNet model counts microalgaes on a given image. Upload an image or click an example image below to use.", | |
article=article, | |
examples=examples, | |
) | |
# # Option 2: Grab an image from a webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) | |
# # Option 3: Continuous image stream from the webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) | |
gr_interface.launch() |