# Add these imports from pdfminer.high_level import extract_text from pdfminer.layout import LAParams import fitz # PyMuPDF from transformers import LayoutLMv3Processor, LayoutLMv3ForSequenceClassification import torch from PIL import Image import numpy as np # Copyright (c) Opendatalab. All rights reserved. import base64 import json import os import time import zipfile from pathlib import Path import re import uuid import pymupdf from io import BytesIO from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse import uvicorn # Initialize FastAPI app app = FastAPI() # Setup and installation commands os.system('pip uninstall -y magic-pdf') os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev') os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py') os.system('python download_models_hf.py') # Configure magic-pdf settings with open('/home/user/magic-pdf.json', 'r') as file: data = json.load(file) data['device-mode'] = "cuda" if os.getenv('apikey'): data['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey') data['llm-aided-config']['title_aided']['enable'] = True with open('/home/user/magic-pdf.json', 'w') as file: json.dump(data, file, indent=4) os.system('cp -r paddleocr /home/user/.paddleocr') # Import required modules from magic_pdf.data.data_reader_writer import FileBasedDataReader from magic_pdf.libs.hash_utils import compute_sha256 from magic_pdf.tools.common import do_parse, prepare_env from loguru import logger def read_fn(path): disk_rw = FileBasedDataReader(os.path.dirname(path)) return disk_rw.read(os.path.basename(path)) def read_fn(path): disk_rw = FileBasedDataReader(os.path.dirname(path)) return disk_rw.read(os.path.basename(path)) def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, layout_mode, formula_enable, table_enable, language): os.makedirs(output_dir, exist_ok=True) try: file_name = f"{str(Path(doc_path).stem)}_{time.time()}" pdf_data = read_fn(doc_path) if is_ocr: parse_method = "ocr" else: parse_method = "auto" local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) do_parse( output_dir, file_name, pdf_data, [], parse_method, False, end_page_id=end_page_id, layout_model=layout_mode, formula_enable=formula_enable, table_enable=table_enable, lang=language, f_dump_orig_pdf=False, ) return local_md_dir, file_name except Exception as e: logger.exception(e) def compress_directory_to_zip(directory_path, output_zip_path): """ 压缩指定目录到一个 ZIP 文件。 :param directory_path: 要压缩的目录路径 :param output_zip_path: 输出的 ZIP 文件路径 """ try: with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: # 遍历目录中的所有文件和子目录 for root, dirs, files in os.walk(directory_path): for file in files: # 构建完整的文件路径 file_path = os.path.join(root, file) # 计算相对路径 arcname = os.path.relpath(file_path, directory_path) # 添加文件到 ZIP 文件 zipf.write(file_path, arcname) return 0 except Exception as e: logger.exception(e) return -1 def image_to_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def replace_image_with_base64(markdown_text, image_dir_path): # 匹配Markdown中的图片标签 pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' # 替换图片链接 def replace(match): relative_path = match.group(1) full_path = os.path.join(image_dir_path, relative_path) base64_image = image_to_base64(full_path) return f"![{relative_path}](data:image/jpeg;base64,{base64_image})" # 应用替换 return re.sub(pattern, replace, markdown_text) def to_markdown(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language): file_path = to_pdf(file_path) if end_pages > 20: end_pages = 20 # 获取识别的md文件以及压缩包文件路径 local_md_dir, file_name = parse_pdf(file_path, './output', end_pages - 1, is_ocr, layout_mode, formula_enable, table_enable, language) archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip") zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) if zip_archive_success == 0: logger.info("压缩成功") else: logger.error("压缩失败") md_path = os.path.join(local_md_dir, file_name + ".md") with open(md_path, 'r', encoding='utf-8') as f: txt_content = f.read() md_content = replace_image_with_base64(txt_content, local_md_dir) # 返回转换后的PDF路径 new_pdf_path = os.path.join(local_md_dir, file_name + "_layout.pdf") return md_content, txt_content, archive_zip_path, new_pdf_path latex_delimiters = [{"left": "$$", "right": "$$", "display": True}, {"left": '$', "right": '$', "display": False}] def init_model(): from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton try: model_manager = ModelSingleton() txt_model = model_manager.get_model(False, False) logger.info(f"txt_model init final") ocr_model = model_manager.get_model(True, False) logger.info(f"ocr_model init final") return 0 except Exception as e: logger.exception(e) return -1 model_init = init_model() logger.info(f"model_init: {model_init}") with open("header.html", "r") as file: header = file.read() latin_lang = [ 'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl', 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv', 'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german' ] arabic_lang = ['ar', 'fa', 'ug', 'ur'] cyrillic_lang = [ 'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava', 'dar', 'inh', 'che', 'lbe', 'lez', 'tab' ] devanagari_lang = [ 'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', 'sa', 'bgc' ] other_lang = ['ch', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka'] all_lang = ['', 'auto'] all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang]) def to_pdf(file_path): with pymupdf.open(file_path) as f: if f.is_pdf: return file_path else: pdf_bytes = f.convert_to_pdf() # 将pdfbytes 写入到uuid.pdf中 # 生成唯一的文件名 unique_filename = f"{uuid.uuid4()}.pdf" # 构建完整的文件路径 tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) # 将字节数据写入文件 with open(tmp_file_path, 'wb') as tmp_pdf_file: tmp_pdf_file.write(pdf_bytes) return tmp_file_path @app.post("/process_document") async def process_document( file: UploadFile = File(...), end_pages: int = 10, is_ocr: bool = False, layout_mode: str = "doclayout_yolo", formula_enable: bool = True, table_enable: bool = True, language: str = "auto" ): try: temp_path = f"/tmp/{file.filename}" with open(temp_path, "wb") as buffer: content = await file.read() buffer.write(content) # Source 1: magic-pdf processing md_content, txt_content, archive_zip_path, new_pdf_path = to_markdown( temp_path, end_pages=end_pages, is_ocr=is_ocr, layout_mode=layout_mode, formula_enable=formula_enable, table_enable=table_enable, language=language ) source_1 = txt_content # Source 3: PDFMiner def extract_text_pdfminer(pdf_path): try: laparams = LAParams( line_margin=0.5, word_margin=0.1, char_margin=2.0, boxes_flow=0.5, detect_vertical=True ) text = extract_text(pdf_path, laparams=laparams) return text except Exception as e: return str(e) source_3 = extract_text_pdfminer(temp_path) # Source 4: PyMuPDF (more precise for tables and structured content) def extract_text_pymupdf(pdf_path): try: doc = fitz.open(pdf_path) text = "" for page_num in range(min(end_pages, doc.page_count)): page = doc[page_num] # Extract text with preserved formatting blocks = page.get_text("blocks") # Sort blocks by vertical position then horizontal blocks.sort(key=lambda b: (b[1], b[0])) for b in blocks: text += b[4] + "\n" doc.close() return text except Exception as e: return str(e) source_4 = extract_text_pymupdf(temp_path) # Clean up os.remove(temp_path) # Compare and validate results def validate_results(sources): # Basic validation checks validated_results = {} for idx, source in sources.items(): # Check for common banking keywords banking_keywords = ['balance', 'deposit', 'withdrawal', 'transaction', 'account'] keyword_presence = sum(1 for keyword in banking_keywords if keyword.lower() in source.lower()) # Check for number patterns (amounts) amount_pattern = r'\$?\d{1,3}(?:,\d{3})*(?:\.\d{2})?' amounts_found = len(re.findall(amount_pattern, source)) # Check for date patterns date_pattern = r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}' dates_found = len(re.findall(date_pattern, source)) validated_results[idx] = { 'text': source, 'confidence_score': (keyword_presence + amounts_found + dates_found) / 10, 'amounts_found': amounts_found, 'dates_found': dates_found } return validated_results validated_sources = validate_results({ 'source_1': source_1, 'source_3': source_3, 'source_4': source_4 }) return JSONResponse({ "sources": validated_sources }) except Exception as e: return JSONResponse( status_code=500, content={"error": str(e)} ) # Initialize models model_init = init_model() logger.info(f"model_init: {model_init}") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)