Spaces:
Runtime error
Runtime error
File size: 11,587 Bytes
f280e03 76d97a2 59be4c5 76d97a2 0cc1374 76d97a2 f280e03 76d97a2 a011e6d 76d97a2 0cc1374 4bb1eb6 f280e03 76d97a2 f280e03 a1ad56a f280e03 76d97a2 f280e03 76d97a2 b07522c 76d97a2 59be4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Add these imports
from pdfminer.high_level import extract_text
from pdfminer.layout import LAParams
import fitz # PyMuPDF
from transformers import LayoutLMv3Processor, LayoutLMv3ForSequenceClassification
import torch
from PIL import Image
import numpy as np
# Copyright (c) Opendatalab. All rights reserved.
import base64
import json
import os
import time
import zipfile
from pathlib import Path
import re
import uuid
import pymupdf
from io import BytesIO
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import uvicorn
# Initialize FastAPI app
app = FastAPI()
# Setup and installation commands
os.system('pip uninstall -y magic-pdf')
os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev')
os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py')
os.system('python download_models_hf.py')
# Configure magic-pdf settings
with open('/home/user/magic-pdf.json', 'r') as file:
data = json.load(file)
data['device-mode'] = "cuda"
if os.getenv('apikey'):
data['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey')
data['llm-aided-config']['title_aided']['enable'] = True
with open('/home/user/magic-pdf.json', 'w') as file:
json.dump(data, file, indent=4)
os.system('cp -r paddleocr /home/user/.paddleocr')
# Import required modules
from magic_pdf.data.data_reader_writer import FileBasedDataReader
from magic_pdf.libs.hash_utils import compute_sha256
from magic_pdf.tools.common import do_parse, prepare_env
from loguru import logger
def read_fn(path):
disk_rw = FileBasedDataReader(os.path.dirname(path))
return disk_rw.read(os.path.basename(path))
def read_fn(path):
disk_rw = FileBasedDataReader(os.path.dirname(path))
return disk_rw.read(os.path.basename(path))
def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, layout_mode, formula_enable, table_enable, language):
os.makedirs(output_dir, exist_ok=True)
try:
file_name = f"{str(Path(doc_path).stem)}_{time.time()}"
pdf_data = read_fn(doc_path)
if is_ocr:
parse_method = "ocr"
else:
parse_method = "auto"
local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method)
do_parse(
output_dir,
file_name,
pdf_data,
[],
parse_method,
False,
end_page_id=end_page_id,
layout_model=layout_mode,
formula_enable=formula_enable,
table_enable=table_enable,
lang=language,
f_dump_orig_pdf=False,
)
return local_md_dir, file_name
except Exception as e:
logger.exception(e)
def compress_directory_to_zip(directory_path, output_zip_path):
"""
压缩指定目录到一个 ZIP 文件。
:param directory_path: 要压缩的目录路径
:param output_zip_path: 输出的 ZIP 文件路径
"""
try:
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# 遍历目录中的所有文件和子目录
for root, dirs, files in os.walk(directory_path):
for file in files:
# 构建完整的文件路径
file_path = os.path.join(root, file)
# 计算相对路径
arcname = os.path.relpath(file_path, directory_path)
# 添加文件到 ZIP 文件
zipf.write(file_path, arcname)
return 0
except Exception as e:
logger.exception(e)
return -1
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def replace_image_with_base64(markdown_text, image_dir_path):
# 匹配Markdown中的图片标签
pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)'
# 替换图片链接
def replace(match):
relative_path = match.group(1)
full_path = os.path.join(image_dir_path, relative_path)
base64_image = image_to_base64(full_path)
return f""
# 应用替换
return re.sub(pattern, replace, markdown_text)
def to_markdown(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language):
file_path = to_pdf(file_path)
if end_pages > 20:
end_pages = 20
# 获取识别的md文件以及压缩包文件路径
local_md_dir, file_name = parse_pdf(file_path, './output', end_pages - 1, is_ocr,
layout_mode, formula_enable, table_enable, language)
archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip")
zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path)
if zip_archive_success == 0:
logger.info("压缩成功")
else:
logger.error("压缩失败")
md_path = os.path.join(local_md_dir, file_name + ".md")
with open(md_path, 'r', encoding='utf-8') as f:
txt_content = f.read()
md_content = replace_image_with_base64(txt_content, local_md_dir)
# 返回转换后的PDF路径
new_pdf_path = os.path.join(local_md_dir, file_name + "_layout.pdf")
return md_content, txt_content, archive_zip_path, new_pdf_path
latex_delimiters = [{"left": "$$", "right": "$$", "display": True},
{"left": '$', "right": '$', "display": False}]
def init_model():
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
try:
model_manager = ModelSingleton()
txt_model = model_manager.get_model(False, False)
logger.info(f"txt_model init final")
ocr_model = model_manager.get_model(True, False)
logger.info(f"ocr_model init final")
return 0
except Exception as e:
logger.exception(e)
return -1
model_init = init_model()
logger.info(f"model_init: {model_init}")
with open("header.html", "r") as file:
header = file.read()
latin_lang = [
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr',
'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german'
]
arabic_lang = ['ar', 'fa', 'ug', 'ur']
cyrillic_lang = [
'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava',
'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
]
devanagari_lang = [
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom',
'sa', 'bgc'
]
other_lang = ['ch', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka']
all_lang = ['', 'auto']
all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang])
def to_pdf(file_path):
with pymupdf.open(file_path) as f:
if f.is_pdf:
return file_path
else:
pdf_bytes = f.convert_to_pdf()
# 将pdfbytes 写入到uuid.pdf中
# 生成唯一的文件名
unique_filename = f"{uuid.uuid4()}.pdf"
# 构建完整的文件路径
tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename)
# 将字节数据写入文件
with open(tmp_file_path, 'wb') as tmp_pdf_file:
tmp_pdf_file.write(pdf_bytes)
return tmp_file_path
@app.post("/process_document")
async def process_document(
file: UploadFile = File(...),
end_pages: int = 10,
is_ocr: bool = False,
layout_mode: str = "doclayout_yolo",
formula_enable: bool = True,
table_enable: bool = True,
language: str = "auto"
):
try:
temp_path = f"/tmp/{file.filename}"
with open(temp_path, "wb") as buffer:
content = await file.read()
buffer.write(content)
# Source 1: magic-pdf processing
md_content, txt_content, archive_zip_path, new_pdf_path = to_markdown(
temp_path,
end_pages=end_pages,
is_ocr=is_ocr,
layout_mode=layout_mode,
formula_enable=formula_enable,
table_enable=table_enable,
language=language
)
source_1 = txt_content
# Source 3: PDFMiner
def extract_text_pdfminer(pdf_path):
try:
laparams = LAParams(
line_margin=0.5,
word_margin=0.1,
char_margin=2.0,
boxes_flow=0.5,
detect_vertical=True
)
text = extract_text(pdf_path, laparams=laparams)
return text
except Exception as e:
return str(e)
source_3 = extract_text_pdfminer(temp_path)
# Source 4: PyMuPDF (more precise for tables and structured content)
def extract_text_pymupdf(pdf_path):
try:
doc = fitz.open(pdf_path)
text = ""
for page_num in range(min(end_pages, doc.page_count)):
page = doc[page_num]
# Extract text with preserved formatting
blocks = page.get_text("blocks")
# Sort blocks by vertical position then horizontal
blocks.sort(key=lambda b: (b[1], b[0]))
for b in blocks:
text += b[4] + "\n"
doc.close()
return text
except Exception as e:
return str(e)
source_4 = extract_text_pymupdf(temp_path)
# Clean up
os.remove(temp_path)
# Compare and validate results
def validate_results(sources):
# Basic validation checks
validated_results = {}
for idx, source in sources.items():
# Check for common banking keywords
banking_keywords = ['balance', 'deposit', 'withdrawal', 'transaction', 'account']
keyword_presence = sum(1 for keyword in banking_keywords if keyword.lower() in source.lower())
# Check for number patterns (amounts)
amount_pattern = r'\$?\d{1,3}(?:,\d{3})*(?:\.\d{2})?'
amounts_found = len(re.findall(amount_pattern, source))
# Check for date patterns
date_pattern = r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}'
dates_found = len(re.findall(date_pattern, source))
validated_results[idx] = {
'text': source,
'confidence_score': (keyword_presence + amounts_found + dates_found) / 10,
'amounts_found': amounts_found,
'dates_found': dates_found
}
return validated_results
validated_sources = validate_results({
'source_1': source_1,
'source_3': source_3,
'source_4': source_4
})
return JSONResponse({
"sources": validated_sources
})
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
# Initialize models
model_init = init_model()
logger.info(f"model_init: {model_init}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |