Spaces:
Running
Running
File size: 24,022 Bytes
61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 216e1e1 61cffc1 ec2e4f6 61cffc1 ec2e4f6 61cffc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import os
import lxml.etree as ET
import pandas as pd
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
import spacy
from tqdm import tqdm
import configparser
import pickle
import re
from transformers import pipeline
import torch
from tqdm import tqdm
import Stemmer
global stemmer
import json
#exclude_tags=['graphic', 'figure']
#include_tags=['note', 'notePara', 'para']
exclude_tags=['graphic']
include_tags=['note', 'notePara', 'para', 'title', 'warningAndCautionPara', 'techName', 'infoName']
add_colon_tags=['title', 'techName']
make_lower_parent_tags=['listItemDefinition']
PARSE_PATHS=['//dmodule/content[last()]/procedure[last()]/preliminaryRqmts[last()]',
'//dmodule/content[last()]/procedure[last()]/mainProcedure[last()]',
'//dmodule/content[last()]/description[last()]',
'//dmodule/content[last()]/crew[last()]/crewRefCard[last()]/crewDrill[last()]',
'//dmodule/identAndStatusSection[last()]/dmAddress[last()]/dmAddressItems[last()]/dmTitle[last()]']
PERSCENTAGE_IN_RATIO=0.5
THRESHOLD=0.1
global nlp, tokenizer_search, tokenizer_qa, device
global search_df, qa_df, SEARCH_DATA
global index_data_loaded, qa_index_data_loaded, qa_model_initialized
global qa_model, qa_model_num
PUBLICATION_DEMO_RU_PATH="publications/Demo publication in Russian"
PUBLICATION_DEMO_EN_PATH="publications/Bike Data Set for Release number 5.0"
PUBLICATION_PATH=PUBLICATION_DEMO_RU_PATH
TOKENIZER_SEARCH_FILENAME='tokenizer_search.pickle'
TOKENIZER_QA_FILENAME='tokenizer_qa.pickle'
INDEX_FOLDER= PUBLICATION_PATH+ os.sep+ "index"
#print('INDEX_FOLDER:', INDEX_FOLDER)
TOKENIZER_SEARCH_PATH= INDEX_FOLDER+ os.sep+ TOKENIZER_SEARCH_FILENAME
TOKENIZER_QA_PATH= INDEX_FOLDER+ os.sep+ TOKENIZER_QA_FILENAME
#print('TOKENIZER_SEARCH_PATH:', TOKENIZER_SEARCH_PATH)
PUBLICATION_LANGUAGE="ru"
nlp=None
search_df=None
qa_df=None
index_data_loaded=False
qa_index_data_loaded=False
SEARCH_DATA= None
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
qa_model_initialized=False
def get_xpath_one(tree, xpath):
res = tree.xpath(xpath)
if res:
return res[0]
def get_dmc(doc):
dmc=""
node= get_xpath_one(doc, '//dmCode')
dmc='DMC-'+'-'.join([node.get('modelIdentCode'), \
node.get('itemLocationCode'), \
node.get('systemCode'), \
node.get('subSystemCode')+node.get('subSubSystemCode'), \
node.get('assyCode'),\
node.get('disassyCode')+node.get('disassyCodeVariant'),\
node.get('infoCode')+node.get('infoCodeVariant'),\
node.get('systemDiffCode')])
#print('dmc: ', dmc)
return dmc
def is_float(string):
if string.replace(".", "").replace(",", "").replace("+", "").replace("-", "").isnumeric():
return True
else:
return False
def stringify_children(node, texts, pis, excludeDigits=True):
s = node.text
if (s != None) and (s.isspace()==False):
if excludeDigits:
if is_float(s)==False:
texts.add(s)
else:
texts.add(s)
for child in node:
if child.tag not in exclude_tags:
if child not in pis:
stringify_children(child, texts, pis)
return
def stringify_children_incl(node, texts, pis, make_lower=False):
ET.strip_tags(node, 'internalRef')
ET.strip_tags(node, 'emphasis')
s = node.text
if s and make_lower==True:
s= s.lower()
if s and node.tag in add_colon_tags:
s=s+':'
#print('s', s)
clear_s= clear_text(s)
if (s != None) and (s.isspace()==False) and (clear_s!='') and (clear_s):
print('s:', s)
print('clear_text(s):', clear_text(s))
texts.append(s)
for child in node:
#print('child.tag:', child.tag)
if (len(child.getchildren())>0) or (child.tag in include_tags):
if (child not in pis) and (child.tag not in exclude_tags):
make_lower=False
if node.tag in make_lower_parent_tags:
make_lower=True
stringify_children_incl(child, texts, pis, make_lower)
return
def clear_text(text):
#print('clear_text!')
clean_text = re.sub(r'(?:(?!\u0301)[\W\d_])+', ' ', str(text).lower())
return clean_text
def lemmatize_and_stemm(df_r):
global nlp, stemmer
#print('lemmatize_and_stemm!')
disabled_pipes = [ "parser", "ner"]
if PUBLICATION_LANGUAGE=="ru":
nlp = spacy.load('ru_core_news_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('ru')#russian
else:
nlp = spacy.load('en_core_web_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('en')#english
lemm_texts = []
stem_texts=[]
for doc in tqdm(nlp.pipe(df_r['lemm_text'].values, disable = disabled_pipes), total=df_r.shape[0]):
lemm_text = " ".join([i.lemma_ for i in doc])
lemm_texts.append(lemm_text)
stem_text = " ".join([stemmer.stemWord(i.text) for i in doc])
stem_texts.append(stem_text)
df_r['lemm_text']= lemm_texts
df_r['stem_text']= stem_texts
df_r=df_r.drop_duplicates()
#print('lemmatization and stemming success!')
return
def tokenize_text(df_r, save_filename):
#global tokenizer_search
#print('tokenize_text!')
#try:
#with open('tokenizer.pickle', 'rb') as handle:
#tokenizer = pickle.load(handle)
#print('tokenizer loaded from file')
#except Exception as e:
tokenizer = Tokenizer(oov_token='<oov>')
print('tokenizer created')
texts= pd.concat([df_r['lemm_text'],df_r['stem_text']])
tokenizer.fit_on_texts(texts)
total_words = len(tokenizer.word_index) + 1
print("Total number of words: ", total_words)
with open(save_filename, 'wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
return tokenizer
def make_final_index(df_r, tokenizer, index_filename='search_index.csv', includePlainText=True):
print('make_final_index!')
tokens=[]
labels=[]
dmcs=[]
texts=[]
for index, row in tqdm(df_r.iterrows()):
#print('row:', row)
text= row['text']
lemm_token= tokenizer.texts_to_sequences([row['lemm_text']])[0]
stem_token= tokenizer.texts_to_sequences([row['stem_text']])[0]
dmc= row['DMC']
#print(str(row['label_enc'])+':'+dmc)
tokens.append(lemm_token)
labels.append(row['label_enc'])
dmcs.append(dmc)
texts.append(text)
tokens.append(stem_token)
labels.append(row['label_enc'])
dmcs.append(dmc)
texts.append(text)
columns= ['tokens', 'labels', 'DMC']
data= {'tokens': tokens, 'labels': labels, 'DMC': dmcs}
if includePlainText==True:
columns= ['tokens', 'labels', 'text', 'DMC']
data= {'tokens': tokens, 'labels': labels, 'text': texts, 'DMC': dmcs}
s_df= pd.DataFrame(columns=columns, data= data)
s_df= s_df.loc[s_df.astype(str).drop_duplicates().index]
print('final index info:')
print(s_df.info())
s_df.to_csv(index_filename, sep=';', index=False)
#print(f'results saved to {index_filename}')
return s_df
def make_search_index(path):
global nlp, tokenizer_search, search_df, index_data_loaded
#print('make_search_index!')
directory= path.replace('"', '')
#print(f'path: {directory}')
df_r= pd.DataFrame(columns=['text'])
for file in os.listdir(directory):
filename = file#os.fsdecode(file)
if 'PMC' in filename:
continue
#print('filename: ', filename)
if filename.lower().endswith(".xml")==False:
continue
filepath= directory+ os.sep+ filename
print('filepath:', filepath)
doc= ET.parse(filepath)
dmc= get_dmc(doc)
file_texts=set()
pis = doc.xpath("//processing-instruction()")
for node in doc.xpath('//dmodule'):
stringify_children(node, file_texts, pis)
#print('file_texts:', file_texts)
df= pd.DataFrame(columns=['text'], data= file_texts)
df['DMC']= dmc
df_r= pd.concat([df_r, df], ignore_index=True)
print('parsing results:')
print(df_r.info())
#PARSING_INDEX_FILENAME='strings_with_DMC.csv'
#print(f'parsing results saved to: {PARSING_INDEX_FILENAME}')
#df_r.to_csv(PARSING_INDEX_FILENAME, index=False, sep = ';')
df_r['lemm_text']=df_r['text'].apply(clear_text)
lemmatize_and_stemm(df_r)
df_r= df_r.reset_index(drop=True)
df_r['label_enc']= df_r.index
tokenizer_search= tokenize_text(df_r, TOKENIZER_SEARCH_PATH)
#print('tokenizer before make_final_index:', tokenizer_search)
search_df= make_final_index(df_r, tokenizer_search)
index_data_loaded= True
return len(search_df)
def make_search_index_qa(path):
global nlp, tokenizer_qa, qa_df, qa_index_data_loaded
#print('make_search_index_qa!')
directory= path.replace('"', '')
#print(f'path: {directory}')
df_r= pd.DataFrame(columns=['text'])
for file in os.listdir(directory):
filename = file#os.fsdecode(file)
if 'PMC' in filename:
continue
#print('filename: ', filename)
if filename.lower().endswith(".xml")==False:
continue
filepath= directory+ os.sep+ filename
#print('filepath:', filepath)
doc= ET.parse(filepath)
dmc= get_dmc(doc)
paths= PARSE_PATHS
pis = doc.xpath("//processing-instruction()")
for pi in pis:
if pi.getparent()!=None:
ET.strip_tags(pi.getparent(), pi.tag)
cntr=1
for expr in paths:
try:
x_path_result = doc.xpath(expr)
except ET.XPathEvalError:
continue
if not x_path_result:
continue
file_texts=[]
dmc_with_chapter= f'{dmc}({cntr})'
for node in x_path_result:#doc.xpath(expr):
stringify_children_incl(node, file_texts, pis)
cntr=cntr+1
#print('file_texts:',file_texts)
#print('file_texts len:',len(file_texts))
if len(file_texts)==0:
continue
concat_texts=[' \n '.join(file_texts)]
#print('file_texts:', file_texts)
#df= pd.DataFrame(columns=['text'], data= file_texts)
df= pd.DataFrame(columns=['text'], data= concat_texts)
df['DMC']= dmc_with_chapter
df_r= pd.concat([df_r, df], ignore_index=True)
#print('parsing results:')
#print(df_r.info())
#PARSING_INDEX_FILENAME='strings_with_DMC.csv'
#print('parsing results saved to: {PARSING_INDEX_FILENAME}')
#df_r.to_csv(PARSING_INDEX_FILENAME, index=False, sep = ';')
df_r['lemm_text']=df_r['text'].apply(clear_text)
lemmatize_and_stemm(df_r)
df_r= df_r.reset_index(drop=True)
df_r['label_enc']= df_r.index
tokenizer_qa= tokenize_text(df_r, TOKENIZER_QA_PATH)
qa_df= make_final_index(df_r, tokenizer_qa, index_filename='qa_index.csv')
qa_index_data_loaded= True
return len(qa_df)
def convert2list(string):
x = json.loads(string)
lst=[]
for n in x:
#print(x)
lst.append(int(n))
return lst
def load_index_data():
global nlp, tokenizer_search, search_df, index_data_loaded
print('load_index_data!')
#spacy
disabled_pipes = [ "parser", "ner"]
if PUBLICATION_LANGUAGE=="ru":
nlp = spacy.load('ru_core_news_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('ru')#russian
else:
nlp = spacy.load('en_core_web_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('en')#english
#print('spacy loaded:', nlp)
#tokenizer
with open(TOKENIZER_SEARCH_PATH, 'rb') as handle:
tokenizer_search = pickle.load(handle)
#print('tokenizer loaded:', tokenizer)
#index
search_index_path= INDEX_FOLDER+os.sep+'search_index.csv'
search_df= pd.read_csv(search_index_path, sep=';')
print('index file loaded:', search_df.info())
search_df['tokens']= search_df['tokens'].apply(convert2list)
index_data_loaded= True
return nlp, tokenizer_search, search_df
def load_index_data_qa():
global nlp, tokenizer_qa, qa_df, qa_index_data_loaded, stemmer
#print('load_index_data_qa!')
#spacy
disabled_pipes = [ "parser", "ner"]
if PUBLICATION_LANGUAGE=="ru":
nlp = spacy.load('ru_core_news_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('ru')#russian
else:
nlp = spacy.load('en_core_web_sm', disable=disabled_pipes)
stemmer= Stemmer.Stemmer('en')#english
print('spacy loaded:', nlp)
#tokenizer
with open(TOKENIZER_QA_PATH, 'rb') as handle:
tokenizer_qa = pickle.load(handle)
#print('tokenizer loaded:', tokenizer_qa)
#index
qa_index_path= INDEX_FOLDER+os.sep+'qa_index.csv'
qa_df= pd.read_csv(qa_index_path, sep=';')
#print('index qa file loaded:', qa_df.info())
qa_df['tokens']= qa_df['tokens'].apply(convert2list)
qa_index_data_loaded= True
return nlp, tokenizer_qa, qa_df
def customIsIn(x , tokens):
result= False
cnt_in=0
for val in x:
if val in tokens:
cnt_in+=1
PERSCENTAGE_IN= cnt_in/len(tokens)
if PERSCENTAGE_IN>=PERSCENTAGE_IN_RATIO:
return True
return result
def get_lemmed_stemmed_text(text):
global nlp, stemmer
#print('nlp loaded or not:', nlp)
if PUBLICATION_LANGUAGE=="ru":
spacy_stopwords = spacy.lang.ru.stop_words.STOP_WORDS #russian
stemmer= Stemmer.Stemmer('ru')#russian
else:
spacy_stopwords = nlp.Defaults.stop_words #english
stemmer= Stemmer.Stemmer('en')#english
#print('spacy_stopwords:', spacy_stopwords)
doc = nlp(clear_text(text))
# Remove stop words
doc_cleared = [token for token in doc if not token.is_stop]
#print('doc_cleared:', doc_cleared)
lemm_text = " ".join([i.lemma_ for i in doc_cleared if not i.lemma_ in spacy_stopwords])
print(f'lemm_text: {lemm_text}')
stem_text = " ".join([stemmer.stemWord(i.text) for i in doc_cleared if not stemmer.stemWord(i.text) in spacy_stopwords])
print(f'stem_text: {stem_text}')
return lemm_text, stem_text
def search_query_any(query, df=None, tokenizer=None):
global SEARCH_DATA, search_df, index_data_loaded, stemmer
print('search_query_any!')
print(f'query: {query}')
if index_data_loaded==False:
load_index_data()
SEARCH_DATA= df
if df is None:
if index_data_loaded==False:
load_index_data()
SEARCH_DATA=search_df
lemm_text, stem_text= get_lemmed_stemmed_text(query)
if tokenizer==None:
tokenizer= tokenizer_search
token_list = tokenizer.texts_to_sequences([lemm_text])[0]
#print(f'token_list: {token_list}')
token_list_stem = tokenizer.texts_to_sequences([stem_text])[0]
#print(f'token_list stem: {token_list_stem}')
mask1 = SEARCH_DATA.tokens.apply(lambda x: customIsIn(x, token_list))
indexes1= SEARCH_DATA[mask1]['labels'].unique()
mask2= SEARCH_DATA.tokens.apply(lambda x: customIsIn(x, token_list_stem))
indexes2= SEARCH_DATA[mask2]['labels'].unique()
indexes= np.concatenate((indexes1, indexes2), axis=None)
results_df= SEARCH_DATA[SEARCH_DATA['labels'].isin(indexes)].drop(['tokens', 'labels'], axis=1)
results_df= results_df.drop_duplicates()
result=[]
regex = re.compile(r'\([^)]*\)')
for index, row in results_df.iterrows():
text= row['text']
dmc= row['DMC']
dmc= re.sub(regex, '', dmc)
result.append({'text': text, 'DMC':dmc})
return result
def search_query_all(query, df=None, tokenizer=None):
global SEARCH_DATA, search_df, index_data_loaded
print('search_query_all!')
print(f'query: {query}')
SEARCH_DATA= df
if df is None:
if index_data_loaded==False:
load_index_data()
SEARCH_DATA=search_df
print('SEARCH_DATA:', SEARCH_DATA.head())
print('nlp loaded or not:', nlp)
doc = nlp(clear_text(query))
lemm_text, stem_text= get_lemmed_stemmed_text(query)
if tokenizer==None:
tokenizer= tokenizer_search
token_list = tokenizer.texts_to_sequences([lemm_text])[0]
print(f'token_list: {token_list}')
token_list_stem = tokenizer.texts_to_sequences([stem_text])[0]
print(f'token_list stem: {token_list_stem}')
mask1= SEARCH_DATA['tokens'].map(set(token_list).issubset)
mask2= SEARCH_DATA['tokens'].map(set(token_list_stem).issubset)
indexes1= SEARCH_DATA[mask1]['labels'].unique()
indexes2= SEARCH_DATA[mask2]['labels'].unique()
indexes= np.concatenate((indexes1, indexes2), axis=None)
results_df= SEARCH_DATA[SEARCH_DATA['labels'].isin(indexes)].drop(['tokens', 'labels'], axis=1)
results_df= results_df.drop_duplicates()
result=[]
regex = re.compile(r'\([^)]*\)')
for index, row in results_df.iterrows():
text= row['text']
dmc= row['DMC']
dmc= re.sub(regex, '', dmc)
result.append({'text': text, 'DMC':dmc})
return result
def concat_by_DMC(s_df):
#print('concat_by_DMC!')
#print(s_df.head())
#объединяем лемматизированную и стеммизированную часть датасета
concat_tokens=[]
for label in s_df['labels'].unique():
tokens_lists= s_df[s_df['labels']==label]['tokens'].to_list()
joined_lst=[]
for lst in tokens_lists:
joined_lst+= lst
concat_tokens.append(joined_lst)
#print(concat_tokens[:5])
df= s_df.drop('tokens', axis=1)
df= df.drop_duplicates()
df['tokens']=concat_tokens
#объединяем тексты и токены по DMC
concat_tokens=[]
DMCs=[]
texts=[]
for dmc_code in df['DMC'].unique():
DMCs.append(dmc_code)
#объединяем списки токенов для одного модуля данных (DMC)
tokens_lists= df[df['DMC']==dmc_code]['tokens'].to_list()
joined_token_lst=[]
for lst in tokens_lists:
joined_token_lst+= lst
concat_tokens.append(joined_token_lst)
#объединяем тексты
text_list= df[df['DMC']==dmc_code]['text'].to_list()
concat_text=' \n '.join(str(txt) for txt in text_list)
texts.append(concat_text)
#print('concat_tokens',len(concat_tokens))
#print('DMCs',len(DMCs))
#print('texts',len(texts))
df= pd.DataFrame(columns=['DMC'], data=DMCs)
df['text']= texts
df['tokens']= concat_tokens
df['labels']= df.index
#print(df.head())
return df
def initialize_qa_model(model):
global qa_df, qa_model, qa_model_num
qa_model_num= model
print('initialize_qa_model!')
if model==1 or str(model)=="1":
qa_model= pipeline("question-answering", "dmibor/ietm_search_and_qa", device=device)
print('initialized model number 1!')
else:#model==2 (базовая)
qa_model= pipeline("question-answering", "timpal0l/mdeberta-v3-base-squad2", device=device)
print('initialized model number 2!')
if qa_index_data_loaded==False:
load_index_data_qa()
#print('len(qa_df)', len(qa_df))
qa_df= concat_by_DMC(qa_df)
#qa_df.to_csv('concat_index.csv', sep=';', index=False)
#print('concat_by_DMC len(qa_df)', len(qa_df))
qa_model_initialized=True
def get_best_and_longest_result(model_results, threshold, mode):
print('get_best_and_longest_result!')
print('mode:', mode)
best_result=None
longest_result=None
if(type(model_results)!= list):
return best_result, longest_result
best_result= model_results[0]
best_result_answer= best_result['answer']
print('best_result_answer: ',best_result_answer)
best_answer_cleaned= (re.sub(r"[\W\d_]+$", "", best_result_answer)).strip()
print('best_answer_cleaned: ',best_answer_cleaned)
longest_answer=''
longest_answer_len= len(best_answer_cleaned)
longest_result= best_result
print("type(mode)", type(mode))
print("mode=='strict'", mode=='strict')
print("mode==\"strict\"", mode=="strict")
if mode=='strict':
return best_result, longest_result
if best_result['score']>=threshold:
print('best_result_answer: ',best_answer_cleaned)
print('best_result score:', best_result['score'])
for result in model_results:
answer= result['answer']
answer_cleaned= re.sub(r"[\W\d_]+$", "", answer).strip()
#print('answer_cleaned: ',answer_cleaned)
if best_answer_cleaned in answer_cleaned:
if len(answer_cleaned)>longest_answer_len:
print('new longest answer: ',answer_cleaned)
print('longest score:', result['score'])
print()
longest_answer= answer_cleaned
longest_answer_len= len(answer_cleaned)
longest_result= result
#print('longest_answer:' , longest_answer)
return best_result, longest_result
def find_answer(question, context, threshold, max_answer_len=1000, top_k=20, verbose=True, mode='strict'):
print('find_answer!')
print('mode:', mode)
found_answer=False
#print('qa_model', qa_model)
model_results= qa_model(question = question, context = context, max_answer_len=max_answer_len, top_k=top_k)
#print(model_result)
best_result, longest_result= get_best_and_longest_result(model_results, threshold, mode)
#print('longest_result', longest_result)
if best_result['score']>=threshold:
longest_answer= longest_result['answer']
answer_cleaned= re.sub(r"[\W\d_]+$", '', longest_answer).strip()
if verbose==True:
prob_value= round(model_result['score'], 2)
print(f'Ответ (уверенность= {prob_value}): {answer_cleaned}')
longest_result['answer']= answer_cleaned
found_answer=True
if found_answer==False and verbose==True:
print('Ответ не найден!')
model_result= best_result
model_result['answer']= longest_result['answer']
return model_result
def answer_question(question, mode, model=1):
global qa_model_initialized, qa_model_num, tokenizer_qa
print('answer_question!')
if qa_model_initialized==False or model!= qa_model_num:
initialize_qa_model(model)
print(f'question: {question}')
print(f'mode: {mode}')
print(f'model: {qa_model}')
filtered_index= search_query_all(question, qa_df, tokenizer_qa)
threshold= THRESHOLD
#print('filtered_index все слова:', len(filtered_index))
if len(filtered_index)<1:
filtered_index= search_query_any(question, qa_df, tokenizer_qa)
threshold= THRESHOLD
#print('filtered_index любое слово:', len(filtered_index))
found_answer=False
best_answer=""
best_score=0
best_DMC=""
regex = re.compile(r'\([^)]*\)')
for indx in filtered_index:
result= find_answer(question, indx['text'], threshold=threshold, max_answer_len=1000, top_k=20, verbose=False, mode=mode)
if result['score']>best_score:
best_answer= result['answer']
best_score= result['score']
best_DMC= indx['DMC']
best_DMC= re.sub(regex, '', best_DMC)
result= [{'score': best_score, 'answer': best_answer, 'DMC': best_DMC}]
return result
|