import os import gradio as gr import openai #from numpy._core.defchararray import endswith, isdecimal, startswith from openai import OpenAI from dotenv import load_dotenv from pathlib import Path from time import sleep import audioread import queue import threading from glob import glob import copy import base64 import json from PIL import Image from io import BytesIO from pydantic import BaseModel import pprint import pandas as pd import yfinance as yf from datetime import datetime, timedelta import pytz import math import numpy as np from pylatexenc.latex2text import LatexNodes2Text import requests from urllib.parse import quote import geo_distance import geo_locate load_dotenv(override=True) key = os.getenv('OPENAI_API_KEY') users = os.getenv('LOGNAME') unames = users.split(',') pwds = os.getenv('PASSWORD') pwdList = pwds.split(',') DEEPSEEK_KEY=os.getenv('DEEPSEEK_KEY') GROQ_KEY=os.getenv('GROQ_KEY') BRAVE_KEY=os.getenv('BRAVE_KEY') BRAVE_SEARCH_KEY=os.getenv('BRAVE_SEARCH_KEY') LOCATIONID_KEY=os.getenv('LOCATIONID_KEY') site = os.getenv('SITE') if site == 'local': dp = Path('./data') dp.mkdir(exist_ok=True) dataDir = './data/' else: dp = Path('/data') dp.mkdir(exist_ok=True) dataDir = '/data/' stock_data_path = dataDir + 'Stocks.txt' braveNewsEndpoint = "https://api.search.brave.com/res/v1/news/search" braveSearchEndpoint = "https://api.search.brave.com/res/v1/web/search" speak_file = dataDir + "speek.wav" # client = OpenAI(api_key = key) #digits = ['zero: ','one: ','two: ','three: ','four: ','five: ','six: ','seven: ','eight: ','nine: '] abbrevs = {'St. ' : 'Saint ', 'Mr. ': 'mister ', 'Mrs. ':'mussus ', 'Mr. ':'mister ', 'Ms. ':'mizz '} special_chat_types = ['math', 'logic'] news_interval_choices = [("Day", "pd"), ("Week", "pw"), ("Month", "pm"), ("Year", "py")] def get_distance(addr1, addr2): (lat1, lon1) = geo_locate.get_geo_coords(addr1, LOCATIONID_KEY) (lat2, lon2) = geo_locate.get_geo_coords(addr2, LOCATIONID_KEY) distance = geo_distance.great_circle_distance_miles(lat1, lon1, lat2, lon2) return distance def get_openai_file(file_id, container_id): url = f'https://api.openai.com/v1/containers/{container_id}/files/{file_id}/content' headers= {"Authorization": "Bearer " + key} response = requests.get( url, headers=headers ) return response def list_openai_container_files(container_id): url = f'https://api.openai.com/v1/containers/{container_id}/files' headers= {"Authorization": "Bearer " + key} response = requests.get( url, headers=headers ) return response def create_openai_container(name): url = 'https://api.openai.com/v1/containers' headers= {"Authorization": "Bearer " + key, "Content-Type": "application/json",} json_data = {"name": name} response = requests.post( url, headers=headers, json=json_data ) return json.loads(response.content)["id"] class Step(BaseModel): explanation: str output: str class MathReasoning(BaseModel): steps: list[Step] final_answer: str def get_brave_search_results(query: str): rv = '' url = f'{braveSearchEndpoint}?q={quote(query)}&count=20' response = requests.get( url, headers= {"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY }, ) rv ='''Following are list items delineated by *item separator* At the end of each item is (item source, item age) *item separator* ''' jdata = response.json() web_results = jdata['web']['results'] for item in web_results: title = item['title'] description = item['description'] rv += f'{title}: {description} --' try: # extra_snippets can be missing for snip in item['extra_snippets']: rv += (snip + ' ') except: pass try: host = item['meta_url']['hostname'] except: host = 'unknown' try: age = item['age'] except: age = 'unknown' rv += f' (Item source: {host}, Item age: {age})' rv += ' *item separator* ' return rv def get_brave_news(query: str, interval: str = 'pd'): url = f'{braveNewsEndpoint}?q={quote(query)}&count=20&extra_snippets=true&freshness={interval}' response = requests.get( url, headers= {"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY }, ) rv ='''Following are list items delineated by *item separator* At the end of each item is (item source, item age) *item separator* ''' jdata = response.json() for item in jdata['results']: title = item['title'] description = item['description'] rv += f'{title}: {description} --' try: # extra_snippets can be missing for snip in item['extra_snippets']: rv += (snip + ' ') except: pass try: host = item['meta_url']['hostname'] except: host = 'unknown' try: age = item['age'] except: age = 'unknown' rv += f' (Item source: {host}, Item age: {age})' rv += ' *item separator* ' return rv def Client(): return OpenAI(api_key = key) def test_plot_df(): data = { "month": ['2024-01','2024-02','2024-03'], "value": [22.4, 30.1, 25.6] } return pd.DataFrame(data) def md(txt): # if 'DOCTYPE' in txt: # return str(txt.replace('GPT','
GPT')) # else: return str(txt).replace('```', ' ').replace(' ', '  ').replace(' ', '  ').replace(' ', '  ').replace('\n','
').replace('~~','~') # return txt def etz_now(): eastern = pytz.timezone('US/Eastern') ltime = datetime.now(eastern) return ltime def date_from_utime(utime): ts = int(utime) dt = datetime.utcfromtimestamp(ts) eastern = pytz.timezone('US/Eastern') return dt.astimezone(eastern).strftime('%Y-%m-%d') def convert_latex_math(text): lines = text.split('\n') start_line = False out_txt = '' for line in lines: if len(line) == 0: out_txt += '\n' continue else: if line == r'\]': continue if line == r'\[': start_line = True continue if start_line: line = '\n' + LatexNodes2Text().latex_to_text(line.strip()) start_line = False if line.startswith(r'\['): loc = line.find(r'\]') if loc > 0: latex_code = line[2:loc] line = '\n' + LatexNodes2Text().latex_to_text(latex_code) out_txt += (line + '\n') return out_txt def stock_list(): rv = '' with open(stock_data_path, 'rt') as fp: lines = fp.readlines() for line in lines: (name, symbol, shares) = line.rstrip().split(',') name = name.strip() symbol = symbol.strip() rv += f'{symbol} {name}\n' return rv def get_stock_list(): stock_list = {} with open(stock_data_path, 'rt') as fp: lines = fp.readlines() for line in lines: (name, symbol, shares) = line.rstrip().split(',') stock_list[symbol.strip()] = (name.strip(),shares.strip()) return stock_list def get_stock_news(search_symbol): fuzzy = True have_symbol = False search_symbol = search_symbol.strip().upper() stock_list = get_stock_list() search_term = search_symbol if search_symbol in stock_list.keys(): have_symbol = True (search_term, shares) = stock_list[search_symbol] try: news = yf.Search(search_term, news_count=5, enable_fuzzy_query=fuzzy).news except: return (f'No results for search term {search_term}, check spelling', None) rv = '' for item in news: rv += f'Title: {item["title"]}\n' rv += f'Publisher: {item["publisher"]}\n' rv += f'Date published: {date_from_utime(item["providerPublishTime"])}\n' rv += f'Link: [URL]({item["link"]})\n\n' if have_symbol: (plot_df, ymax, deltas) = stock_week_df(search_symbol) else: (plot_df, ymax, deltas) = (pd.DataFrame(), 0.0, (0.0, 0.0, 0.0)) return (rv, plot_df, ymax, deltas) def stock_history_df(num_weeks): values = [] dates = [] xmax = 0 for offset in range(num_weeks+1): (value, date) = get_stock_report(False, offset) # date = date[5:] values.append(value) dates.append(date) if float(value) > xmax: xmax = float(value) values.reverse() dates.reverse() data = { "date": dates, "value" : values } return (pd.DataFrame(data), f'{int(xmax + 10000)}') def stock_deltas(values): num = len(values) month_end_avg = float(np.average(np.array(values[-3:]))) month_start_avg = float(np.average(np.array(values[0:4]))) week_start_avg = float(np.average(np.array(values[-7:-4]))) week_end_avg = float(np.average(np.array(values[-2:]))) month_delta = 100 * (month_end_avg - month_start_avg)/month_start_avg week_delta = 100 * (week_end_avg - week_start_avg)/week_start_avg daily_delta = 100 * ((float(values[num-1])/float(values[num-2])) - 1.0) # avg = np.average(npa) return (month_delta, week_delta, daily_delta) def stock_week_df(symbol): try: dates = [] values = [] ymax = 0 etime = etz_now() if etime.hour >= 16: etime = etime + timedelta(days=1) week_ago = etime - timedelta(days=40) # was 8 end = etime.strftime('%Y-%m-%d') start = week_ago.strftime('%Y-%m-%d') df = yf.download(symbol.upper(), start = start, end = end, progress = False, ) vals2d = df.values.tolist() valsTxt = [] numDays = len(vals2d) for i in range(numDays): valsTxt.append(vals2d[i][0]) for val in valsTxt: v = round(float(val),2) values.append(v) if v > ymax: ymax = v for row in df.index: dates.append(row.strftime('%Y-%m-%d')) # fit_data = lms_fit(dates, values) # pct_delta = lms_fit_trend(dates, values) deltas = stock_deltas(values) data = { "date": dates, "value" : values, # "fit" : fit_data } # fig = make_mp_figure(dates, values, fit_data, ymax) return (pd.DataFrame(data), ymax, deltas) except: return (pd.DataFrame(), ymax, (0.0, 0.0, 0.0)) def stock_recent_delta(symbol): try: dates = [] values = [] ymax = 0 etime = etz_now() if etime.hour >= 16: etime = etime + timedelta(days=1) week_ago = etime - timedelta(days=8) end = etime.strftime('%Y-%m-%d') start = week_ago.strftime('%Y-%m-%d') df = yf.download(symbol.upper(), start = start, end = end, progress = False, ) vals2d = df.values.tolist() valsTxt = [] numDays = len(vals2d) for i in range(numDays): valsTxt.append(vals2d[i][0]) for val in valsTxt: v = round(float(val),2) values.append(v) if v > ymax: ymax = v for row in df.index: dates.append(row.strftime('%Y-%m-%d')) start_val = float(np.average(np.array(values[:2]))) end_val = float(values[len(values)-1]) return f'{(end_val/start_val - 1.0)*100:.1f}' except: return 'NA' def get_alerts(): try: rv = '' # stock_data = {} global stock_data_path with open(stock_data_path, 'rt') as fp: lines = fp.readlines() for line in lines: (name, symbol, shares) = line.rstrip().split(',') name = name.strip() symbol = symbol.strip() delta_pct = stock_recent_delta(symbol) if delta_pct == 'NA': rv += f'\n{symbol} ({name}) NA' else: rv += f'\n{symbol} ({name}) {delta_pct}%' if abs(float(delta_pct)) > 3: rv += ' **\*\*\*** ' return 'Stock price changes over last week:\nChanges greater than +/-3% marked by **\*\*\***\n ' + rv + '\n' except: return "Error getting stock deltas\n" def get_stock_report(verbose = True, offset = 0): try: stock_data = {} global stock_data_path error_msg = '' with open(stock_data_path, 'rt') as fp: lines = fp.readlines() for line in lines: (name, symbol, shares) = line.rstrip().split(',') name = name.strip() symbol = symbol.strip() shares = shares.strip() stock_data[symbol] = {"symbol": symbol, "name": name, "shares": shares, "closing": '0'} for symbol in stock_data.keys(): (closing_price, closing_date) = get_last_closing(symbol, offset) if closing_price == 0: error_msg += f'Error getting closing for {symbol}\n' stock_data[symbol]['closing'] = f'{closing_price:.2f}' total_value = 0.0 if verbose: rv = f'At closing on {closing_date}:\n' for item in stock_data.values(): rv += str(item) + '\n' total_value += float(item['closing']) * float(item['shares']) rv += (f'\nTotal value = {total_value:.2f}\n') if len(error_msg) > 0: rv += error_msg rv += f'Eastern time is: {etz_now()}' else: for item in stock_data.values(): total_value += float(item['closing']) * float(item['shares']) return (total_value, closing_date) except: rv = 'Error getting stock report' return rv def get_last_closing(symbol, offset=0, timeout=10): try: etime = etz_now() if etime.hour >= 16: etime = etime + timedelta(days=1) if offset > 0: etime = etime - timedelta(weeks=offset) five_days_ago = etime - timedelta(days=6) end = etime.strftime('%Y-%m-%d') start = five_days_ago.strftime('%Y-%m-%d') df = yf.download(symbol, start = start, end = end, progress = False, timeout=timeout, ) # print(df) closing_date = 'unknown' data_top = df.tail(1) for row in data_top.index: closing_date = row.strftime('%Y-%m-%d') # print(closing_date) return (df.iat[-1,0], closing_date) except: return (0.0, "0000-00-00") def get_total_daily_closing_sequence(num_days): try: first_loop = True max_val = 0.0 stock_list = get_stock_list() symbols = [s for s in stock_list.keys()] # symbols = symbols[8:10] etime = etz_now() if etime.hour >= 16: etime = etime + timedelta(days=1) end = etime.strftime('%Y-%m-%d') start_time = etime - timedelta(days = num_days) start = start_time.strftime('%Y-%m-%d') df = yf.download(symbols, start = start, end = end, progress = False, ) # val2d = df.values.tolist() dates = [] for row in df.index: dates.append(row.strftime('%Y-%m-%d')) # columns = list(df.columns.values) # cvals = df[columns[0]].tolist() for sym in symbols: (name, shares) = stock_list[sym] values = df[('Close', sym)].tolist() n = len(values) for i in range(n): if math.isnan(float(values[i])): if i == 0: values[0] = values[1] else: values[i] = values[i-1] if first_loop: first_loop = False total_values = values.copy() for i in range(n): total_values[i] = float(total_values[i]) * float(shares) else: for i in range(n): total_values[i] += (float(values[i]) * float(shares)) for i in range(n): total_values[i] = round(total_values[i], 2) if total_values[i] > max_val: max_val = total_values[i] data = { "date": dates, "value" : total_values } return (pd.DataFrame(data), max_val) except: return (pd.DataFrame(), 0.0) def get_daily_closing_sequence(symbol, num_days): try: dates = [] values = [] etime = etz_now() if etime.hour >= 16: etime = etime + timedelta(days=1) end = etime.strftime('%Y-%m-%d') start_time = etime - timedelta(days = num_days) start = start_time.strftime('%Y-%m-%d') df = yf.download(symbol, start = start, end = end, progress = False, ) vals2d = df.values.tolist() valsTxt = [] values = [round(float(vals2d[i][0]),2) for i in range(len(vals2d))] for row in df.index: dates.append(row.strftime('%Y-%m-%d')) return(dates, values) except: return([],[]) def create_stock_data_file(txt): with open(stock_data_path, 'wt') as fp: fp.write(txt) def solve(prompt, chatType): tokens_in = 0 tokens_out = 0 tokens = 0 if chatType == 'math': instruction = "You are a helpful math tutor. Guide the user through the solution step by step." elif chatType == "logic": instruction = "you are an expert in logic and reasoning. Guide the user through the solution step by step" try: completion = Client().beta.chat.completions.parse( model = 'gpt-4o-2024-08-06', messages = [ {"role": "system", "content": instruction}, {"role": "user", "content": prompt} ], response_format=MathReasoning, max_tokens = 2000 ) tokens_in = completion.usage.prompt_tokens tokens_out = completion.usage.completion_tokens tokens = completion.usage.total_tokens msg = completion.choices[0].message if msg.parsed: dr = msg.parsed.model_dump() response = pprint.pformat(dr) elif msg.refusal: response = msg.refusal except Exception as e: if type(e) == openai.LengthFinishReasonError: response = 'Too many tokens' else: response = str(e) return (response, tokens_in, tokens_out, tokens) def genUsageStats(do_reset=False): result = [] ttotal4o_in = 0 ttotal4o_out = 0 ttotal4mini_in = 0 ttotal4mini_out = 0 totalAudio = 0 totalSpeech = 0 totalImages = 0 totalHdImages = 0 if do_reset: dudPath = dataDir + '_speech.txt' if os.path.exists(dudPath): os.remove(dudPath) for user in unames: tokens4o_in = 0 tokens4o_out = 0 tokens4mini_in = 0 tokens4mini_out = 0 fp = dataDir + user + '_log.txt' if os.path.exists(fp): accessOk = False for i in range(3): try: with open(fp) as f: dataList = f.readlines() if do_reset: os.remove(fp) else: for line in dataList: (u, t) = line.split(':') (t, m) = t.split('-') (tin, tout) = t.split('/') incount = int(tin) outcount = int(tout) if 'mini' in m: tokens4mini_in += incount tokens4mini_out += outcount ttotal4mini_in += incount ttotal4mini_out += outcount else: tokens4o_in += incount tokens4o_out += outcount ttotal4o_in += incount ttotal4o_out += outcount accessOk = True break except: sleep(3) if not accessOk: return f'File access failed reading stats for user: {user}' userAudio = 0 fp = dataDir + user + '_audio.txt' if os.path.exists(fp): accessOk = False for i in range(3): try: with open(fp) as f: dataList = f.readlines() if do_reset: os.remove(fp) else: for line in dataList: (dud, len) = line.split(':') userAudio += int(len) totalAudio += int(userAudio) accessOk = True break except: sleep(3) if not accessOk: return f'File access failed reading audio stats for user: {user}' userSpeech = 0 fp = dataDir + user + '_speech.txt' if os.path.exists(fp): accessOk = False for i in range(3): try: with open(fp) as f: dataList = f.readlines() if do_reset: os.remove(fp) else: for line in dataList: (dud, len) = line.split(':') userSpeech += int(len) totalSpeech += int(userSpeech) accessOk = True break except: sleep(3) if not accessOk: return f'File access failed reading speech stats for user: {user}' user_images = 0 user_hd_images = 0 fp = image_count_path(user) if os.path.exists(fp): accessOk = False for i in range(3): try: with open(fp) as f: dataList = f.readlines() if do_reset: os.remove(fp) else: for line in dataList: x = line.strip() if x == 'hd': user_hd_images += 1 totalHdImages += 1 else: user_images += 1 totalImages += 1 accessOk = True break except: sleep(3) if not accessOk: return f'File access failed reading image gen stats for user: {user}' result.append([user, f'{tokens4mini_in}/{tokens4mini_out}', f'{tokens4o_in}/{tokens4o_out}', f'audio:{userAudio}',f'speech:{userSpeech}', f'images:{user_images}/{user_hd_images}']) result.append(['totals', f'{ttotal4mini_in}/{ttotal4mini_out}', f'{ttotal4o_in}/{ttotal4o_out}', f'audio:{totalAudio}',f'speech:{totalSpeech}', f'images:{totalImages}/{totalHdImages}']) return result def new_conversation(user): clean_up(user) # .wav files flist = [] for ext in ['png','docx','xlsx','pdf','pptx', 'csv']: flist.extend(glob(f'{dataDir}{user}*.{ext}')) flist.extend(glob(f'{dataDir}{user}_image.b64')) for fpath in flist: if os.path.exists(fpath): os.remove(fpath) if user == unames[0]: mode_list = ["Advanced", "Chat", "News", "Search"] else: mode_list = ["Chat", "News", "Search"] return [None, [], gr.Markdown(value='', label='Dialog', container=True), gr.Image(visible=False, value=None), gr.Image(visible=False, value=None), '', gr.LinePlot(visible=False), gr.Dropdown(value='pd', visible=False), gr.Dropdown(choices=mode_list, value=mode_list[0]), gr.DownloadButton(label='Download File', visible=False, value=None), '', gr.File(label='Upload File', visible=False)] def updatePassword(txt): password = txt.lower().strip() if password == pwdList[0]: mode_list = ["Advanced", "Chat", "News", "Search"] else: mode_list = ["Chat", "News", "Search"] return [password, "*********", gr.Dropdown(choices=mode_list, value=mode_list[0])] # def parse_math(txt): # ref = 0 # loc = txt.find(r'\(') # if loc == -1: # return txt # while (True): # loc2 = txt[ref:].find(r'\)') # if loc2 == -1: # break # loc = txt[ref:].find(r'\(') # if loc > -1: # loc2 += 2 # slice = txt[ref:][loc:loc2] # frag = lconv.convert(slice) # txt = txt[:loc+ref] + frag + txt[loc2+ref:] # ref = len(txt[ref:loc]) + len(frag) # return txt def get_response(inputs, previous_response_id, container_id, image_file, uploaded_file_path): instructions = ''' You are a helpful assistant who knows how to browse the web for info and to write and run python code and to generate images. ''' instructions += f''' Do not use latex for math expressions in text output. If a chart, table or plot is produced, return it as an image. If a powerpoint slide is created, return it as an image but do not offer a download link. If the user asks you to output a file, You must include the file you generate in the annotation of the output text. If a MCP server requires a password input you will use {pwdList[0]}. ''' if uploaded_file_path != '' and uploaded_file_path.casefold().split('.')[-1] == 'pdf': pdf_b64 = '' with open(uploaded_file_path, 'rb') as fp: data = fp.read() b64data = base64.b64encode(data) pdf_b64 = b64data.decode('utf-8') inputs.append( { "role" :"user", "content": [ { "type": "input_file", "filename": f'{os.path.basename(uploaded_file_path)}', "file_data": f'data:application/pdf;base64,{pdf_b64}', } ] } ) if image_file != '': with open(image_file, 'rt') as fp: b64data = fp.read() inputs.append( { "role": "user", "content": [ { "type": "input_image", "image_url": f'data:image/jpeg;base64, {b64data}', } ] } ) response = Client().responses.create( model= "gpt-5-mini", #"gpt-5-mini", "o4-mini", tools=[{ "type": "web_search_preview" }, { "type": "code_interpreter", "container": container_id}, #{'type': 'auto'}}, { "type": "image_generation", "quality": "medium", "size": "1024x1024"}, # {"type": "function", "name": "get_distance", # "description": "get calculated straight-line (great-circle) distance between two locations or addresses.", # "parameters": { # "type": "object", "properties": { # "addr1": { # "type": "string", # "description": "The street address or other designation of a location.", # }, # "addr2": { # "type": "string", # "description": "The street address or other designation of a location.", # }, # }, # "required": ["addr1", "addr2"], # }, { "type": "mcp", "server_label": "Geo_distance", "server_description": "A MCP server to compute straight line distances between two locations", "server_url": "https://dlflannery-geo-distance.hf.space/gradio_api/mcp/", "require_approval": "never", }, ], previous_response_id=previous_response_id, instructions = instructions, input=inputs, reasoning ={ "effort": "medium", "summary": "auto" } ) return response def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_image_file='', plot=None, news_interval = 'pd', mode = 'Chat', uploaded_file_path=''): image_out = gr.Image(visible=False, value=None) file_out = gr.DownloadButton(value=None) image_gen_model = 'gpt-4o-2024-08-06' user_window = user_window.lower().strip() isBoss = False query = '' if not response: response = '' plot = gr.LinePlot(visible=False) # plot = gr.Plot(visible=False) if user_window == unames[0] and pwd_window == pwdList[0]: isBoss = True if prompt == 'stats': response = genUsageStats() return [past, str(response), None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if prompt == 'reset': response = genUsageStats(True) return [past, md(response), None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if prompt.startswith('gpt4'): gptModel = 'gpt-4o-2024-08-06' prompt = prompt[5:] if prompt.startswith('gpt5m'): gptModel = 'gpt-5-mini' prompt = prompt[6:] if prompt.startswith("clean"): user = prompt[6:] response = f'cleaned all .wav and .b64 files for {user}' final_clean_up(user, True) return [past, response, None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if prompt.startswith('files'): (log_cnt, wav_cnt, other_cnt, others, log_list) = list_permanent_files() response = f'{log_cnt} log files\n{wav_cnt} .wav files\n{other_cnt} Other files:\n{others}\nlogs: {str(log_list)}' return [past, response, None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if prompt.startswith('stock'): args = prompt.split(' ') num = len(args) if num == 1: response = stock_list() return [past, md(response), None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] elif num == 2: if args[1] == 'alerts': response = get_alerts() return [past, md(response), None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] else: response = get_stock_report() if args[1] == 'value': return [past, md(response), None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] elif args[1] == 'history': (plot_df, ymax) = get_total_daily_closing_sequence(40) #stock_history_df(12) # ymax = float(ymax) return [past, md(response), None, gptModel, uploaded_image_file, # plot] gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270, y_lim=[400000, 800000], label="Portfolio Value History"), image_out, file_out, uploaded_file_path] elif num >= 3: if args[1] == 'news': symbol = ' '.join(args[2:]) (response, plot_df, ymax, (dm, dw, dd)) = get_stock_news(symbol) ymax *= 1.1 mdtxt = md(f'News for {symbol}:\nTrends: Month = {dm:.1f}%, Week = {dw:.1f}%, Day = {dd:.1f}%\n\n' + response) if plot_df.empty: return [past, mdtxt, None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] else: return [past, mdtxt, None, gptModel, uploaded_image_file, gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270, y_lim=[0, ymax],label=f"{symbol.upper()} Recent Prices", color_map={''}), image_out, file_out, uploaded_file_path] if prompt.startswith('stockload'): create_stock_data_file(prompt[9:].lstrip()) return [past, 'Stock data file created', None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if user_window in unames and pwd_window == pwdList[unames.index(user_window)]: chatType = 'normal' deepseek = False using_groq = False reasoning = False prompt = prompt.strip() need_turn = True responses = [] inputs = [] prev_id = None text = '' reasoning = '' show_reasoning = False if mode == "Advanced": if len(past): (prev_id, container_id) = past.pop() past = [] while mode == 'Advanced' and need_turn: need_turn = False if len(past) == 0: container_id = create_openai_container('My Container') file_text = '' if uploaded_file_path != '': upfile_ext = uploaded_file_path.casefold().split('.')[-1] if upfile_ext == 'txt': with open(uploaded_file_path, 'rt') as fp: file_text = fp.read() + '\n' uploaded_file_path = '' inputs.append( {"role": "user", "content": f"{file_text + prompt}"} ) else: (prev_id, container_id) = past.pop() for item in past: response += item try: result = get_response(inputs, prev_id, container_id, uploaded_image_file, uploaded_file_path) uploaded_image_file = '' uploaded_file_path = '' except Exception as e: return [[], f"Sorry, there was an error ({str(e)}) getting the AI response", prompt, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] image_done = False ann_files = [] # (container_id, file_id, filename) code_files = [] # (container_id, file_id, filename) text += '\n??? AI returned no text for this query\n' for output in result.output: if output.type == 'message': for content in output.content: if content.type == 'output_text': text = content.text for anns in content.annotations: if anns.type == "container_file_citation": try: file_name = anns.filename file_id = anns.file_id cont_id = anns.container_id if file_name.find('.png') > 0: if not image_done: image_done = True fpath = dataDir + user_window + '.png' image_data = get_openai_file(file_id, cont_id).content with open(fpath,'wb') as fp: fp.write(image_data) image_out = gr.Image(visible=True, value=fpath) else: ann_files.append((cont_id, file_id, file_name)) except: pass # for ann in file_anns: # text += f'\n\n{str(ann)}\n' elif output.type == 'code_interpreter_call' : cont_id = output.container_id file_list_object = list_openai_container_files(cont_id) try: file_list_json = json.loads(file_list_object.content) for file_item in file_list_json['data']: file_bytes = file_item['bytes'] file_id = file_item['id'] file_name = file_item['path'] code_files.append((cont_id, file_id, file_name)) except: pass elif output.type == 'function_call': if output.name == 'get_distance': args = json.loads(output.arguments) distance = get_distance(args['addr1'], args['addr2']) inputs.append({ "type": "function_call_output", "call_id": f"{output.call_id}", "output": f"{float(distance):.2f}", } ) need_turn = True continue elif output.type == 'image_generation_call': if len(output.result) > 500 and not image_done: image_done = True; image_data = base64.b64decode(output.result) fpath = dataDir + user_window + '.png' with open(fpath,'wb') as fp: fp.write(image_data) image_out = gr.Image(visible=True, value=fpath) elif isBoss and output.type == 'reasoning': for item in output.summary: reasoning += f'\nReasoning: {item.text}' do_file_download = False ext = '' backup_image = None if len(ann_files) > 0: (cont_id, file_id, file_name) = ann_files[-1] ext = file_name.split('.')[-1].casefold() do_file_download = True elif len(code_files) > 0: for i in range(len(code_files)): (cont_id, file_id, file_name) = code_files[i] if file_name.casefold().find('access') >= 0: continue ext = file_name.split('.')[-1].casefold() if ext == 'png': if not image_done: backup_image = code_files[i] else: do_file_download = True break if not do_file_download and not image_done and backup_image: (cont_id, file_id, file_name) = backup_image fpath = dataDir + user_window + '.png' image_data = get_openai_file(file_id, cont_id).content with open(fpath,'wb') as fp: fp.write(image_data) image_out = gr.Image(visible=True, value=fpath) if do_file_download: fpath = dataDir + user_window + '.' + ext try: data = get_openai_file(file_id, cont_id).content with open(fpath,'wb') as fp: fp.write(data) file_name = os.path.basename(file_name) file_out = gr.DownloadButton(label='Download '+ file_name, visible=True, value=fpath) except: text += f'\nUnable to load code-generated file: {file_name}' # text += '\nIf a download link is given above, ignore it. Use the button below' if need_turn: # past.append(md(prompt)) past.append((result.id, container_id)) continue out_text = "\n".join(line for line in text.splitlines() if 'download' not in line.casefold()) res = md("\n\n***YOU***: " + prompt + "\n\n***GPT***: " + out_text + '\n' + reasoning) response += res past.append(res) past.append((result.id, container_id)) tokens_in = result.usage.input_tokens tokens_out = result.usage.output_tokens dataFile = new_func(user_window) with open(dataFile, 'a') as f: f.write(f'{user_window}:{tokens_in}/{tokens_out}-4omini\n') if isBoss: response += md(f"\n\ngpt-5-mini: tokens in/out = {tokens_in}/{tokens_out}\n") return [past, response , None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if mode == 'Search': loc = prompt.find('q:') if loc > -1: query = prompt[loc+2:] prompt = prompt[0:loc] augmented_prompt = prompt finish_reason = 'ok' if prompt.lower().startswith('dsr1 '): deepseek = True ds_model = 'deepseek-ai/DeepSeek-R1' prompt = prompt[5:] elif prompt.lower().startswith('ds1.5 '): deepseek = True ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B' prompt = prompt[6:] elif prompt.lower().startswith('ds14 '): deepseek = True ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B' prompt = prompt[5:] elif prompt.lower().startswith('ds70 '): deepseek = True ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B' prompt = prompt[5:] elif prompt.lower().startswith('ds70g '): deepseek = True using_groq = True ds_model = 'deepseek-r1-distill-llama-70b' prompt = prompt[6:] elif prompt.lower().startswith('o1m '): reasoning = True gptModel = 'o1-mini' prompt = prompt[4:] + \ '. Provide a detailed step-by-step description of your reasoning. Do not use Latex for math expressions.' elif prompt.lower().startswith('solve'): prompt = 'How do I solve ' + prompt[5:] + ' Do not use Latex for math expressions.' chatType = 'math' elif prompt.lower().startswith('puzzle'): chatType = 'logic' prompt = prompt[6:] if deepseek: prompt = prompt + '. Do not use Latex for math expressions.' if past == []: if mode == 'News': if news_interval != "None": news = get_brave_news(prompt, news_interval) augmented_prompt = f'{news}\n{prompt}\nGive highest priority to information just provided\n' augmented_prompt += 'Mention item source and item age for each item used\n' elif mode == 'Search': news = get_brave_search_results(prompt) augmented_prompt = f'{news}\nThe topic is: {prompt}\nGive highest priority to information just provided\n' augmented_prompt += ' \n' + query augmented_prompt += ' \n Do not use Latex for math expressions.' past.append({"role":"user", "content":augmented_prompt}) gen_image = (uploaded_image_file != '') if chatType in special_chat_types: (reply, tokens_in, tokens_out, tokens) = solve(prompt, chatType) final_text = reply reply = md(reply) reporting_model = image_gen_model elif not gen_image: if deepseek: if using_groq: client = OpenAI(api_key=GROQ_KEY, base_url='https://api.groq.com/openai/v1') completion = client.chat.completions.create( temperature=0.6, model= ds_model, messages=past, ) reporting_model='deepseek70-groq' else: client = OpenAI(api_key=DEEPSEEK_KEY, base_url='https://api.together.xyz/v1') completion = client.chat.completions.create( temperature=0.6, model= ds_model, messages=past, max_tokens=16000 ) reporting_model='deepseek-together-' + ds_model[-3:].replace('.5B','1.5B') if completion.choices[0].finish_reason == 'length': finish_reason = "Truncated due to token limit" else: completion = Client().chat.completions.create(model=gptModel, messages=past) reporting_model = gptModel else: (completion, msg) = analyze_image(user_window, image_gen_model, prompt) uploaded_image_file= '' reporting_model = image_gen_model if not msg == 'ok': return [past, msg, None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] if not chatType in special_chat_types: reply = completion.choices[0].message.content # if 'groq' in reporting_model: if deepseek: reply = convert_latex_math(reply) final_text = reply if deepseek: loc1 = reply.find('') if loc1 > -1: loc2 = reply.find('') if loc2 > loc1: final_text = reply[loc2 + 8:] reply = reply.replace('','\n***Thinking***\n').replace('','\n***Done thinking***\n') tokens_in = completion.usage.prompt_tokens tokens_out = completion.usage.completion_tokens tokens = completion.usage.total_tokens if len(query) > 0: prompt = 'Search topic = ' + prompt + ', query = ' + query response += "\n\n***YOU***: " + prompt + "\n\n***GPT***: " + reply.replace('```','\n\n```\n\n') if isBoss: response += md(f"\n\n{reporting_model}: tokens in/out = {tokens_in}/{tokens_out}\n") if finish_reason != 'ok': response += md(f"\n{finish_reason}\n") if tokens > 40000: response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON." past.append({"role":"assistant", "content": final_text}) if not deepseek and not reasoning: accessOk = False for i in range(3): try: dataFile = new_func(user_window) with open(dataFile, 'a') as f: m = '4o' if 'mini' in reporting_model: m = '4omini' f.write(f'{user_window}:{tokens_in}/{tokens_out}-{m}\n') accessOk = True break except Exception as e: sleep(3) if not accessOk: response += f"\nDATA LOG FAILED, path = {dataFile}" return [past, response , None, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] else: return [[], "User name and/or password are incorrect", prompt, gptModel, uploaded_image_file, plot, image_out, file_out, uploaded_file_path] def new_func(user): dataFile = dataDir + user + '_log.txt' return dataFile def image_count_path(user): fpath = dataDir + user + '_image_count.txt' return fpath def transcribe(user, pwd, fpath): user = user.lower().strip() pwd = pwd.lower().strip() if not (user in unames and pwd in pwdList): return 'Bad credentials' with audioread.audio_open(fpath) as audio: duration = int(audio.duration) if duration > 0: with open(dataDir + user + '_audio.txt','a') as f: f.write(f'audio:{str(duration)}\n') with open(fpath,'rb') as audio_file: transcript = Client().audio.transcriptions.create( model='whisper-1', file = audio_file ,response_format = 'text' ) reply = transcript return str(reply) def pause_message(): return "Audio input is paused. Resume or Stop as desired" # def gen_output_audio(txt): # if len(txt) < 10: # txt = "This dialog is too short to mess with!" # response = Client().audio.speech.create(model="tts-1", voice="fable", input=txt) # with open(speak_file, 'wb') as fp: # fp.write(response.content) # return speak_file # def set_speak_button(txt): # vis = False # if txt and len(txt) > 2: # vis = True # return gr.Button(visible=vis) def update_user(user_win): user_win = user_win.lower().strip() user = 'unknown' for s in unames: if user_win == s: user = s break return [user, user] def speech_worker(chunks=[],q=[]): for chunk in chunks: fpath = q.pop(0) response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') with open(fpath, 'wb') as fp: fp.write(response.content) def gen_speech_file_names(user, cnt): rv = [] for i in range(0, cnt): rv.append(dataDir + f'{user}_speech{i}.wav') return rv def final_clean_up(user, do_b64 = False): user = user.strip().lower() if user == 'kill': flist = glob(dataDir + '*') elif user == 'all': flist = glob(dataDir + '*_speech*.wav') if do_b64: flist.extend(glob(dataDir + '*.b64')) else: flist = glob(dataDir + f'{user}_speech*.wav') if do_b64: flist.append(dataDir + user + '_image.b64') for fpath in flist: try: os.remove(fpath) except: continue def delete_image(user): fpath = dataDir + user + '.png' if os.path.exists(fpath): os.remove(fpath) def list_permanent_files(): flist = os.listdir(dataDir) others = [] log_cnt = 0 wav_cnt = 0 other_cnt = 0 list_logs = [] for fpath in flist: if fpath.endswith('.txt'): log_cnt += 1 list_logs.append(fpath) elif fpath.endswith('.wav'): wav_cnt += 1 else: others.append(fpath) other_cnt = len(others) if log_cnt > 5: list_logs = [] return (str(log_cnt), str(wav_cnt), str(other_cnt), str(others), list_logs) def make_image(prompt, user, pwd): user = user.lower().strip() msg = 'Error: unable to create image.' fpath = None model = 'dall-e-2' quality = 'standard' size = '512x512' if user in unames and pwd == pwdList[unames.index(user)]: if len(prompt.strip()) == 0: return [gr.Image(value=None, visible=False), 'You must provide a prompt describing image you desire'] if prompt.startswith('hd '): prompt = prompt[3:] model = 'gpt-image-1' #'dall-e-3' size = '1024x1024' quality = 'high' #hd' try: response = Client().images.generate(model=model, prompt=prompt,size=size, quality=quality) # response_format='b64_json', except Exception as ex: msg = ex.message return [gr.Image(visible=False, value=None), msg] else: try: response = Client().images.generate(model=model, prompt=prompt,size=size, response_format='b64_json') except Exception as ex: msg = ex.message return [gr.Image(visible=False, value=None), msg] if len(response.data) == 0: msg = "OpenAI returned no image data" return [gr.Image(visible=False, value=None), msg] try: image_data = response.data[0].b64_json with Image.open(BytesIO(base64.b64decode(image_data))) as image: fpath = dataDir + user + '.png' image.save(fpath) with open(image_count_path(user), 'at') as fp: if quality == 'hd': fp.write('hd\n') else: fp.write('1\n') msg = 'Image created!' except: return [gr.Image(visible=False, value=None), msg] else: msg = 'Incorrect user name or password' return [gr.Image(visible=False, value=None), msg] return [gr.Image(visible=True, value=fpath), msg] def show_help(): txt = ''' 1. Gemeral: 1.1 Login with user name and password (not case-sensitive) 1.2 Type prompts (questions, instructions) into "Prompt or Question" window (OR) you can speak prompts by tapping the audio "Record" button, saying your prompt, then tapping the "Stop" button. Your prompt will appear in the Prompt window, and you can edit it there if needed. 1.3 Text in the "Dialog" window can be spoken by tapping the "Speak Dialog" button. 2. Select Mode: 2.1 Chat mode interacts with the GPT model with info limited to when last trained. 2.2 News mode searches the internet for news posted within the period selected in "News Window" 2.3 Search mode searches the internet based on prompt as topic. Optionally if you prompt with \ **q:** \, it searches topic and answers question based on search results. 3. Chat: 3.1 Enter prompt and tap the "Submit Prompt/Question" button. The responses appear in the Dialog window. 3.2 Enter follow-up questions in the Prompt window either by typing or speaking. Tap the voice entry "Reset Voice Entry" button to enable additional voice entry. Then tap "Submit Prompt/Question". 3.3 If topic changes or when done chatting, tap the "Restart Conversation" button. 4. Solve math equations or logic problems providing step-by-step analysis, using Chat mode: 4.1 Math: Make "solve" the first word in your prompt, followed by the equation, e.g., x^2 - x + 1 = 0 4.2 Logic: Make "puzzle" the first word in your prompt, followed by a detailed description of a logic problem with the answer(s) you desire. 5. Make Image: 5.1 Enter description of desired image in prompt window via either typing or voice entry 5.2 Tap the "Make Image" button. This can take a few seconds. 5.3 There is a download button on the image display if your system supports file downloads. 5.4 When done viewing image, tap the "Restart Conversation" button 6. Analyze an Image you provide: 6.1 Enter what you want to know about the image in the prompt window. You can include instructions to write a poem about something in the image, for example. Or just say "what's in this image?" 6.2 Tap the "Upload Image to Analyze" button. 6.3 An empty image box will appear lower left. Drag or upload image into it. It offers web cam or camera input also. 6.4 The image should appear. This can take some time with a slow internet connection and large image. 6.5 Tap the "Submit Prompt/Question" button to start the analysis. This initiates a chat dialog and you can ask follow-up questions. However, the image is not re-analyzed for follow-up dialog. Hints: 1. Better chat and image results are obtained by including detailed descriptions and instructions in the prompt. 2. Always tap "Restart Conversation" before requesting an image or changing topics. 3. Audio input and output functions depend on the hardware capability of your device. 4. "Speak Dialog" will voice whatever is currently in the Dialog window. You can repeat it and you can edit what's to be spoken. Except: In a chat conversation, spoken dialog will only include the latest prompt/response ("YOU:/GPT:") sequence.''' return str(txt).replace('```', ' ').replace(' ', '  ').replace(' ', '  ').replace(' ', '  ').replace('\n','
') def upload_image(prompt, user, password, mode): if not (user in unames and password == pwdList[unames.index(user)]): return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"] if len(prompt) < 3 and mode != 'Advanced': return [gr.Image(visible=False, interactive=True), "You must provide prompt/instructions (what to do with the image)"] return [gr.Image(visible=True, interactive=True), ''] def load_image(image, user): status = 'OK, image is ready! Tap "Submit Prompt/Question" to start analyzing' try: with open(image, 'rb') as image_file: base64_image = base64.b64encode(image_file.read()).decode('utf-8') fpath = dataDir + user + '_image.b64' with open(fpath, 'wt') as fp: fp.write(base64_image) except: status = 'Unable to upload image' return [fpath, status] def analyze_image(user, model, prompt): status = 'ok' try: with open(dataDir + user + '_image.b64', 'rt') as fp: base64_image = fp.read() except: status = "base64 image file not found" return [None, status] completion = Client().chat.completions.create( model=model, messages=[ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", "detail": "high" } } ] } ], max_tokens= 500 ) # response = completion.choices[0].message.content return [completion, status] def mode_change(mode): if mode != "News": return gr.Dropdown(visible=False) else: return gr.Dropdown(visible=True, value='pd') def upload_file(user, password): if not (user in unames and password == pwdList[unames.index(user)]): return [gr.File(visible=False, label='Upload File'), 'Incorrect user and/or password'] return [gr.File(visible=True, label='UploadFile'), ''] def load_file(file, user): fname = os.path.basename(file.name) out_path = dataDir + user + '-' + fname with open(file.name, 'rb') as fp: data = fp.read() with open(out_path, 'wb') as fp2: fp2.write(data) return [out_path, f'File {fname} uploaded\n'] # return [value # outputs=[uploaded_file_path, output_window] with gr.Blocks(theme=gr.themes.Soft()) as demo: history = gr.State([]) password = gr.State("") user = gr.State("unknown") model = gr.State('gpt-4o-mini') #"gpt-4o-mini") 'gpt-5-mini' q = gr.State([]) qsave = gr.State([]) uploaded_image_file = gr.State('') uploaded_file_path = gr.State('') def clean_up(user): flist = glob(dataDir + f'{user}_speech*.wav') for fpath in flist: try: os.remove(fpath) except: continue def initial_audio_output(txt, user): global digits global abbrevs if not user in unames: return [gr.Audio(sources=None), []] clean_up(user) q = [] if len(txt.strip()) < 5: return ['None', q] try: loc = txt.rindex('YOU:') txt = txt[loc:] except: pass for s,x in abbrevs.items(): txt = txt.replace(s, x) words_in = txt.replace('**', '').replace(' ','').split('
') words_out = [] for s in words_in: s = s.lstrip('- *@#$%^&_=+-') if len(s) > 0: loc = s.find(' ') if loc > 1: val = s[0:loc] isnum = val.replace('.','0').isdecimal() if isnum: if val.endswith('.'): val = val[:-1].replace('.',' point ') + '., ' else: val = val.replace('.', ' point ') + ', ' s = 'num'+ val + s[loc:] words_out.append(s) chunklist = [] for chunk in words_out: if chunk.strip() == '': continue isnumbered = chunk.startswith('num') number = '' loc = 0 if isnumbered: chunk = chunk[3:] loc = chunk.index(',') number = chunk[0:loc] chunk = chunk[loc:] locs = [] for i in range(1,len(chunk)-1): (a, b, c) = chunk[i-1:i+2] if a.isdecimal() and b == '.' and c.isdecimal(): locs.append(i) for i in locs: chunk = chunk[:i] + ' point ' + chunk[i+1:] if len(chunk) > 50: finechunks = chunk.split('.') for fchunk in finechunks: if isnumbered: fchunk = number + fchunk isnumbered = False if len(fchunk) > 0: if fchunk != '"': chunklist.append(fchunk) else: line = number + chunk if line != '"': chunklist.append(line) total_speech = 0 for chunk in chunklist: total_speech += len(chunk) with open(dataDir + user + '_speech.txt','a') as f: f.write(f'speech:{str(total_speech)}\n') chunk = chunklist[0] if chunk.strip() == '': return gr.Audio(sources=None) fname_list = gen_speech_file_names(user, len(chunklist)) q = fname_list.copy() qsave = fname_list.copy() fname = q.pop(0) if len(chunklist) > 0: threading.Thread(target=speech_worker, daemon=True, args=(chunklist[1:],fname_list[1:])).start() response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') with open(fname, 'wb') as fp: fp.write(response.content) return [fname, q] def gen_output_audio(q, user): try: fname = q.pop(0) except: final_clean_up(user) return [None, gr.Audio(sources=None)] if not os.path.exists(fname): sleep(3) if not os.path.exists(fname): response = Client().audio.speech.create(model="tts-1", voice="fable", input='Sorry, text-to-speech is responding too slow right now', speed=0.85, response_format='wav') with open(fname, 'wb') as fp: fp.write(response.content) q = [] return [fname, q] gr.Markdown('# GPT Chat') gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.') with gr.Row(): user_window = gr.Textbox(label = "User Name") user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window]) pwd_window = gr.Textbox(label = "Password") help_button = gr.Button(value='Help & Hints') with gr.Row(): audio_widget = gr.Audio(type='filepath', format='wav',waveform_options=gr.WaveformOptions( show_recording_waveform=True), sources=['microphone'], scale = 3, label="Prompt/Question Voice Entry", max_length=120) reset_button = gr.ClearButton(value="Reset Voice Entry", scale=1) #new_func1() with gr.Row(): clear_button = gr.Button(value="Restart Conversation") # gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")], # value="gpt-3.5-turbo", label="GPT Model", interactive=True) button_do_image = gr.Button(value='Make Image') button_upload_file = gr.Button(value='Upload Input File') button_get_image = gr.Button(value='Upload Image to Analyze') speak_output = gr.Button(value="Speak Dialog", visible=True) submit_button = gr.Button(value="Submit Prompt/Question") with gr.Row(): prompt_window = gr.Textbox(label = "Prompt or Question", scale=7) mode = gr.Dropdown(choices=[ 'Chat', 'News', 'Search'], label='Mode', scale=1, interactive=True) news_period = gr.Dropdown(choices=news_interval_choices, interactive=True,label='News Window',scale=1, visible=False) gr.Markdown('### **Dialog:**') #output_window = gr.Text(container=True, label='Dialog') output_window = gr.Markdown(container=True) file_download = gr.DownloadButton(label='Download File', visible=False, value=None) with gr.Row(): with gr.Column(): image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze', type='filepath') with gr.Column(): image_window = gr.Image(visible=False, label='Generated Image') with gr.Row(): file_uploader = gr.File(visible=False, label='Upload File', type='filepath') with gr.Row(): plot = gr.LinePlot(test_plot_df(), x="month", y="value", visible=False, label="Portfolio Value History") submit_button.click(chat, inputs=[prompt_window, user_window, password, history, output_window, model, uploaded_image_file, plot, news_period, mode, uploaded_file_path], outputs=[history, output_window, prompt_window, model, uploaded_image_file, plot, image_window, file_download, uploaded_file_path]) clear_button.click(fn=new_conversation, inputs=user_window, outputs=[prompt_window, history, output_window, image_window, image_window2, uploaded_image_file, plot, news_period, mode, file_download, uploaded_file_path, file_uploader]) audio_widget.stop_recording(fn=transcribe, inputs=[user_window, password, audio_widget], outputs=[prompt_window]) audio_widget.pause_recording(fn=pause_message, outputs=[prompt_window]) reset_button.add(audio_widget) audio_out = gr.Audio(autoplay=True, visible=False) audio_out.stop(fn=gen_output_audio, inputs=[q, user_window], outputs = [audio_out, q]) speak_output.click(fn=initial_audio_output, inputs=[output_window, user_window], outputs=[audio_out, q]) # output_window.change(fn=set_speak_button, inputs=output_window,outputs=speak_output) button_do_image.click(fn=make_image, inputs=[prompt_window,user_window, password],outputs=[image_window, output_window]) image_window.change(fn=delete_image, inputs=[user]) help_button.click(fn=show_help, outputs=output_window) button_get_image.click(fn=upload_image,inputs = [prompt_window, user, password, mode], outputs = [image_window2, output_window]) image_window2.upload(fn=load_image, inputs=[image_window2, user], outputs=[uploaded_image_file, output_window]) mode.change(fn=mode_change, inputs=mode,outputs=news_period) pwd_window.blur(updatePassword, inputs = pwd_window, outputs = [password, pwd_window, mode]) button_upload_file.click(fn=upload_file, inputs=[user, password], outputs=[file_uploader, output_window]) file_uploader.upload(fn=load_file, inputs=[file_uploader, user], outputs=[uploaded_file_path, output_window]) # demo.unload(final_clean_up(user)) demo.launch(share=True, allowed_paths=[dataDir], ssr_mode=False)