Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| import openai | |
| from numpy._core.defchararray import endswith, isdecimal | |
| from openai import OpenAI | |
| from dotenv import load_dotenv | |
| from pathlib import Path | |
| from time import sleep | |
| import audioread | |
| import queue | |
| import threading | |
| from glob import glob | |
| import copy | |
| import base64 | |
| import json | |
| from PIL import Image | |
| from io import BytesIO | |
| from pydantic import BaseModel | |
| import pprint | |
| import pandas as pd | |
| import yfinance as yf | |
| from datetime import datetime, timedelta | |
| import pytz | |
| load_dotenv(override=True) | |
| key = os.getenv('OPENAI_API_KEY') | |
| users = os.getenv('LOGNAME') | |
| unames = users.split(',') | |
| pwds = os.getenv('PASSWORD') | |
| pwdList = pwds.split(',') | |
| site = os.getenv('SITE') | |
| if site == 'local': | |
| dp = Path('./data') | |
| dp.mkdir(exist_ok=True) | |
| dataDir = './data/' | |
| else: | |
| dp = Path('/data') | |
| dp.mkdir(exist_ok=True) | |
| dataDir = '/data/' | |
| stock_data_path = dataDir + 'Stocks.txt' | |
| speak_file = dataDir + "speek.wav" | |
| # client = OpenAI(api_key = key) | |
| #digits = ['zero: ','one: ','two: ','three: ','four: ','five: ','six: ','seven: ','eight: ','nine: '] | |
| abbrevs = {'St. ' : 'Saint ', 'Mr. ': 'mister ', 'Mrs. ':'mussus ', 'Mr. ':'mister ', 'Ms. ':'mizz '} | |
| special_chat_types = ['math', 'logic'] | |
| class Step(BaseModel): | |
| explanation: str | |
| output: str | |
| class MathReasoning(BaseModel): | |
| steps: list[Step] | |
| final_answer: str | |
| def Client(): | |
| return OpenAI(api_key = key) | |
| def etz_now(): | |
| eastern = pytz.timezone('US/Eastern') | |
| ltime = datetime.now(eastern) | |
| return ltime | |
| def get_stock_report(): | |
| try: | |
| stock_data = {} | |
| global stock_data_path | |
| error_msg = '' | |
| with open(stock_data_path, 'rt') as fp: | |
| lines = fp.readlines() | |
| for line in lines: | |
| (name, symbol, shares) = line.rstrip().split(',') | |
| name = name.strip() | |
| symbol = symbol.strip() | |
| shares = shares.strip() | |
| stock_data[symbol] = {"symbol": symbol, "name": name, "shares": shares, "closing": '0'} | |
| for symbol in stock_data.keys(): | |
| (closing_price, closing_date) = get_last_closing(symbol) | |
| if closing_price == 0: | |
| error_msg += f'Error getting closing for {symbol}\n' | |
| stock_data[symbol]['closing'] = f'{closing_price:.2f}' | |
| total_value = 0.0 | |
| rv = f'At closing on {closing_date}:\n' | |
| for item in stock_data.values(): | |
| rv += str(item) + '\n' | |
| total_value += float(item['closing']) * float(item['shares']) | |
| rv += (f'\nTotal value = {total_value:.2f}\n') | |
| if len(error_msg) > 0: | |
| rv += error_msg | |
| except: | |
| rv = 'Error getting stock report' | |
| return rv | |
| def get_last_closing(symbol, timeout=10): | |
| try: | |
| etime = etz_now() | |
| if etime.hour >= 16: | |
| etime = etime + timedelta(days=1) | |
| five_days_ago = etime - timedelta(days=6) | |
| end = etime.strftime('%Y-%m-%d') | |
| start = five_days_ago.strftime('%Y-%m-%d') | |
| df = yf.download(symbol, | |
| start = start, | |
| end = end, | |
| progress = False, | |
| timeout=timeout, | |
| ) | |
| # print(df) | |
| closing_date = 'unknown' | |
| data_top = df.tail(1) | |
| for row in data_top.index: | |
| closing_date = row.strftime('%Y-%m-%d') | |
| # print(closing_date) | |
| return (df.iat[-1,1], closing_date) | |
| except: | |
| return (0.0, "0000-00-00") | |
| def create_stock_data_file(txt): | |
| with open(stock_data_path, 'wt') as fp: | |
| fp.write(txt) | |
| def solve(prompt, chatType): | |
| tokens_in = 0 | |
| tokens_out = 0 | |
| tokens = 0 | |
| if chatType == 'math': | |
| instruction = "You are a helpful math tutor. Guide the user through the solution step by step." | |
| elif chatType == "logic": | |
| instruction = "you are an expert in logic and reasoning. Guide the user through the solution step by step" | |
| try: | |
| completion = Client().beta.chat.completions.parse( | |
| model = 'gpt-4o-2024-08-06', | |
| messages = [ | |
| {"role": "system", "content": instruction}, | |
| {"role": "user", "content": prompt} | |
| ], | |
| response_format=MathReasoning, | |
| max_tokens = 2000 | |
| ) | |
| tokens_in = completion.usage.prompt_tokens | |
| tokens_out = completion.usage.completion_tokens | |
| tokens = completion.usage.total_tokens | |
| msg = completion.choices[0].message | |
| if msg.parsed: | |
| dr = msg.parsed.model_dump() | |
| response = pprint.pformat(dr) | |
| elif msg.refusal: | |
| response = msg.refusal | |
| except Exception as e: | |
| if type(e) == openai.LengthFinishReasonError: | |
| response = 'Too many tokens' | |
| else: | |
| response = str(e) | |
| return (response, tokens_in, tokens_out, tokens) | |
| def genUsageStats(do_reset=False): | |
| result = [] | |
| ttotal4o_in = 0 | |
| ttotal4o_out = 0 | |
| ttotal4mini_in = 0 | |
| ttotal4mini_out = 0 | |
| totalAudio = 0 | |
| totalSpeech = 0 | |
| totalImages = 0 | |
| totalHdImages = 0 | |
| if do_reset: | |
| dudPath = dataDir + '_speech.txt' | |
| if os.path.exists(dudPath): | |
| os.remove(dudPath) | |
| for user in unames: | |
| tokens4o_in = 0 | |
| tokens4o_out = 0 | |
| tokens4mini_in = 0 | |
| tokens4mini_out = 0 | |
| fp = dataDir + user + '_log.txt' | |
| if os.path.exists(fp): | |
| accessOk = False | |
| for i in range(3): | |
| try: | |
| with open(fp) as f: | |
| dataList = f.readlines() | |
| if do_reset: | |
| os.remove(fp) | |
| else: | |
| for line in dataList: | |
| (u, t) = line.split(':') | |
| (t, m) = t.split('-') | |
| (tin, tout) = t.split('/') | |
| incount = int(tin) | |
| outcount = int(tout) | |
| if 'mini' in m: | |
| tokens4mini_in += incount | |
| tokens4mini_out += outcount | |
| ttotal4mini_in += incount | |
| ttotal4mini_out += outcount | |
| else: | |
| tokens4o_in += incount | |
| tokens4o_out += outcount | |
| ttotal4o_in += incount | |
| ttotal4o_out += outcount | |
| accessOk = True | |
| break | |
| except: | |
| sleep(3) | |
| if not accessOk: | |
| return f'File access failed reading stats for user: {user}' | |
| userAudio = 0 | |
| fp = dataDir + user + '_audio.txt' | |
| if os.path.exists(fp): | |
| accessOk = False | |
| for i in range(3): | |
| try: | |
| with open(fp) as f: | |
| dataList = f.readlines() | |
| if do_reset: | |
| os.remove(fp) | |
| else: | |
| for line in dataList: | |
| (dud, len) = line.split(':') | |
| userAudio += int(len) | |
| totalAudio += int(userAudio) | |
| accessOk = True | |
| break | |
| except: | |
| sleep(3) | |
| if not accessOk: | |
| return f'File access failed reading audio stats for user: {user}' | |
| userSpeech = 0 | |
| fp = dataDir + user + '_speech.txt' | |
| if os.path.exists(fp): | |
| accessOk = False | |
| for i in range(3): | |
| try: | |
| with open(fp) as f: | |
| dataList = f.readlines() | |
| if do_reset: | |
| os.remove(fp) | |
| else: | |
| for line in dataList: | |
| (dud, len) = line.split(':') | |
| userSpeech += int(len) | |
| totalSpeech += int(userSpeech) | |
| accessOk = True | |
| break | |
| except: | |
| sleep(3) | |
| if not accessOk: | |
| return f'File access failed reading speech stats for user: {user}' | |
| user_images = 0 | |
| user_hd_images = 0 | |
| fp = image_count_path(user) | |
| if os.path.exists(fp): | |
| accessOk = False | |
| for i in range(3): | |
| try: | |
| with open(fp) as f: | |
| dataList = f.readlines() | |
| if do_reset: | |
| os.remove(fp) | |
| else: | |
| for line in dataList: | |
| x = line.strip() | |
| if x == 'hd': | |
| user_hd_images += 1 | |
| totalHdImages += 1 | |
| else: | |
| user_images += 1 | |
| totalImages += 1 | |
| accessOk = True | |
| break | |
| except: | |
| sleep(3) | |
| if not accessOk: | |
| return f'File access failed reading image gen stats for user: {user}' | |
| result.append([user, f'{tokens4mini_in}/{tokens4mini_out}', f'{tokens4o_in}/{tokens4o_out}', f'audio:{userAudio}',f'speech:{userSpeech}', f'images:{user_images}/{user_hd_images}']) | |
| result.append(['totals', f'{ttotal4mini_in}/{ttotal4mini_out}', f'{ttotal4o_in}/{ttotal4o_out}', f'audio:{totalAudio}',f'speech:{totalSpeech}', f'images:{totalImages}/{totalHdImages}']) | |
| return result | |
| def new_conversation(user): | |
| clean_up(user) # .wav files | |
| flist = glob(f'{dataDir}{user}.png') | |
| flist.extend(glob(f'{dataDir}{user}_image.b64')) | |
| for fpath in flist: | |
| if os.path.exists(fpath): | |
| os.remove(fpath) | |
| return [None, [], None, gr.Image(visible=False, value=None), gr.Image(visible=False, value=None), ''] | |
| def updatePassword(txt): | |
| password = txt.lower().strip() | |
| return [password, "*********"] | |
| # def parse_math(txt): | |
| # ref = 0 | |
| # loc = txt.find(r'\(') | |
| # if loc == -1: | |
| # return txt | |
| # while (True): | |
| # loc2 = txt[ref:].find(r'\)') | |
| # if loc2 == -1: | |
| # break | |
| # loc = txt[ref:].find(r'\(') | |
| # if loc > -1: | |
| # loc2 += 2 | |
| # slice = txt[ref:][loc:loc2] | |
| # frag = lconv.convert(slice) | |
| # txt = txt[:loc+ref] + frag + txt[loc2+ref:] | |
| # ref = len(txt[ref:loc]) + len(frag) | |
| # return txt | |
| def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_image_file=''): | |
| image_gen_model = 'gpt-4o-2024-08-06' | |
| user_window = user_window.lower().strip() | |
| isBoss = False | |
| if user_window == unames[0] and pwd_window == pwdList[0]: | |
| isBoss = True | |
| if prompt == 'stats': | |
| response = genUsageStats() | |
| return [past, response, None, gptModel, uploaded_image_file] | |
| if prompt == 'reset': | |
| response = genUsageStats(True) | |
| return [past, response, None, gptModel, uploaded_image_file] | |
| if prompt.startswith('gpt4'): | |
| gptModel = 'gpt-4o-2024-08-06' | |
| prompt = prompt[5:] | |
| if prompt.startswith("clean"): | |
| user = prompt[6:] | |
| response = f'cleaned all .wav and .b64 files for {user}' | |
| final_clean_up(user, True) | |
| return [past, response, None, gptModel, uploaded_image_file] | |
| if prompt.startswith('files'): | |
| (log_cnt, wav_cnt, other_cnt, others, log_list) = list_permanent_files() | |
| response = f'{log_cnt} log files\n{wav_cnt} .wav files\n{other_cnt} Other files:\n{others}\nlogs: {str(log_list)}' | |
| return [past, response, None, gptModel, uploaded_image_file] | |
| if prompt.startswith('stocks'): | |
| response = get_stock_report() | |
| return [past, response, None, gptModel, uploaded_image_file] | |
| if prompt.startswith('stockload'): | |
| create_stock_data_file(prompt[9:].lstrip()) | |
| return [past, 'Stock data file created', None, gptModel, uploaded_image_file] | |
| if user_window in unames and pwd_window == pwdList[unames.index(user_window)]: | |
| chatType = 'normal' | |
| prompt = prompt.strip() | |
| if prompt.lower().startswith('solve'): | |
| prompt = 'How do I solve ' + prompt[5:] + ' Do not use Latex for math expressions.' | |
| chatType = 'math' | |
| elif prompt.lower().startswith('puzzle'): | |
| chatType = 'logic' | |
| prompt = prompt[6:] | |
| past.append({"role":"user", "content":prompt}) | |
| gen_image = (uploaded_image_file != '') | |
| if chatType in special_chat_types: | |
| (reply, tokens_in, tokens_out, tokens) = solve(prompt, chatType) | |
| reporting_model = image_gen_model | |
| elif not gen_image: | |
| completion = Client().chat.completions.create(model=gptModel, | |
| messages=past) | |
| reporting_model = gptModel | |
| else: | |
| (completion, msg) = analyze_image(user_window, image_gen_model, prompt) | |
| uploaded_image_file= '' | |
| reporting_model = image_gen_model | |
| if not msg == 'ok': | |
| return [past, msg, None, gptModel, uploaded_image_file] | |
| if not chatType in special_chat_types: | |
| reply = completion.choices[0].message.content | |
| tokens_in = completion.usage.prompt_tokens | |
| tokens_out = completion.usage.completion_tokens | |
| tokens = completion.usage.total_tokens | |
| response += "\n\nYOU: " + prompt + "\nGPT: " + reply | |
| if isBoss: | |
| response += f"\n{reporting_model}: tokens in/out = {tokens_in}/{tokens_out}" | |
| if tokens > 40000: | |
| response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON." | |
| past.append({"role":"assistant", "content": reply}) | |
| accessOk = False | |
| for i in range(3): | |
| try: | |
| dataFile = new_func(user_window) | |
| with open(dataFile, 'a') as f: | |
| m = '4o' | |
| if 'mini' in reporting_model: | |
| m = '4omini' | |
| f.write(f'{user_window}:{tokens_in}/{tokens_out}-{m}\n') | |
| accessOk = True | |
| break | |
| except Exception as e: | |
| sleep(3) | |
| if not accessOk: | |
| response += f"\nDATA LOG FAILED, path = {dataFile}" | |
| return [past, response , None, gptModel, uploaded_image_file] | |
| else: | |
| return [[], "User name and/or password are incorrect", prompt, gptModel, uploaded_image_file] | |
| def new_func(user): | |
| dataFile = dataDir + user + '_log.txt' | |
| return dataFile | |
| def image_count_path(user): | |
| fpath = dataDir + user + '_image_count.txt' | |
| return fpath | |
| def transcribe(user, pwd, fpath): | |
| user = user.lower().strip() | |
| pwd = pwd.lower().strip() | |
| if not (user in unames and pwd in pwdList): | |
| return 'Bad credentials' | |
| with audioread.audio_open(fpath) as audio: | |
| duration = int(audio.duration) | |
| if duration > 0: | |
| with open(dataDir + user + '_audio.txt','a') as f: | |
| f.write(f'audio:{str(duration)}\n') | |
| with open(fpath,'rb') as audio_file: | |
| transcript = Client().audio.transcriptions.create( | |
| model='whisper-1', file = audio_file ,response_format = 'text' ) | |
| reply = transcript | |
| return str(reply) | |
| def pause_message(): | |
| return "Audio input is paused. Resume or Stop as desired" | |
| # def gen_output_audio(txt): | |
| # if len(txt) < 10: | |
| # txt = "This dialog is too short to mess with!" | |
| # response = Client().audio.speech.create(model="tts-1", voice="fable", input=txt) | |
| # with open(speak_file, 'wb') as fp: | |
| # fp.write(response.content) | |
| # return speak_file | |
| def set_speak_button(txt): | |
| vis = False | |
| if len(txt) > 2: | |
| vis = True | |
| return gr.Button(visible=vis) | |
| def update_user(user_win): | |
| user_win = user_win.lower().strip() | |
| user = 'unknown' | |
| for s in unames: | |
| if user_win == s: | |
| user = s | |
| break | |
| return [user, user] | |
| def speech_worker(chunks=[],q=[]): | |
| for chunk in chunks: | |
| fpath = q.pop(0) | |
| response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') | |
| with open(fpath, 'wb') as fp: | |
| fp.write(response.content) | |
| def gen_speech_file_names(user, cnt): | |
| rv = [] | |
| for i in range(0, cnt): | |
| rv.append(dataDir + f'{user}_speech{i}.wav') | |
| return rv | |
| def final_clean_up(user, do_b64 = False): | |
| user = user.strip().lower() | |
| if user == 'kill': | |
| flist = glob(dataDir + '*') | |
| elif user == 'all': | |
| flist = glob(dataDir + '*_speech*.wav') | |
| if do_b64: | |
| flist.extend(glob(dataDir + '*.b64')) | |
| else: | |
| flist = glob(dataDir + f'{user}_speech*.wav') | |
| if do_b64: | |
| flist.append(dataDir + user + '_image.b64') | |
| for fpath in flist: | |
| try: | |
| os.remove(fpath) | |
| except: | |
| continue | |
| def delete_image(user): | |
| fpath = dataDir + user + '.png' | |
| if os.path.exists(fpath): | |
| os.remove(fpath) | |
| def list_permanent_files(): | |
| flist = os.listdir(dataDir) | |
| others = [] | |
| log_cnt = 0 | |
| wav_cnt = 0 | |
| other_cnt = 0 | |
| list_logs = [] | |
| for fpath in flist: | |
| if fpath.endswith('.txt'): | |
| log_cnt += 1 | |
| list_logs.append(fpath) | |
| elif fpath.endswith('.wav'): | |
| wav_cnt += 1 | |
| else: | |
| others.append(fpath) | |
| other_cnt = len(others) | |
| if log_cnt > 5: | |
| list_logs = [] | |
| return (str(log_cnt), str(wav_cnt), str(other_cnt), str(others), list_logs) | |
| def make_image(prompt, user, pwd): | |
| user = user.lower().strip() | |
| msg = 'Error: unable to create image.' | |
| fpath = None | |
| model = 'dall-e-2' | |
| size = '512x512' | |
| quality = 'standard' | |
| if user in unames and pwd == pwdList[unames.index(user)]: | |
| if len(prompt.strip()) == 0: | |
| return [gr.Image(value=None, visible=False), 'You must provide a prompt describing image you desire'] | |
| if prompt.startswith('hd '): | |
| prompt = prompt[3:] | |
| model = 'dall-e-3' | |
| size = '1024x1024' | |
| quality = 'hd' | |
| try: | |
| response = Client().images.generate(model=model, prompt=prompt,size=size, | |
| quality=quality, response_format='b64_json') | |
| except Exception as ex: | |
| msg = ex.message | |
| return [gr.Image(visible=False, value=None), msg] | |
| if len(response.data) == 0: | |
| msg = "OpenAI returned no image data" | |
| return [gr.Image(visible=False, value=None), msg] | |
| try: | |
| image_data = response.data[0].b64_json | |
| with Image.open(BytesIO(base64.b64decode(image_data))) as image: | |
| fpath = dataDir + user + '.png' | |
| image.save(fpath) | |
| with open(image_count_path(user), 'at') as fp: | |
| if quality == 'hd': | |
| fp.write('hd\n') | |
| else: | |
| fp.write('1\n') | |
| msg = 'Image created!' | |
| except: | |
| return [gr.Image(visible=False, value=None), msg] | |
| else: | |
| msg = 'Incorrect user name or password' | |
| return [gr.Image(visible=False, value=None), msg] | |
| return [gr.Image(visible=True, value=fpath), msg] | |
| def show_help(): | |
| return ''' | |
| 1. Gemeral: | |
| 1.1 Login with user name and password (not case-sensitive) | |
| 1.2 Type prompts (questions, instructions) into "Prompt or Question" window (OR) you can speak prompts by | |
| tapping the audio "Record" button, saying your prompt, then tapping the "Stop" button. | |
| Your prompt will appear in the Prompt window, and you can edit it there if needed. | |
| 1.3 Text in the "Dialog" window can be spoken by tapping the "Speak Dialog" button. | |
| 2. Chat: | |
| 2.1 Enter prompt and tap the "Submit Prompt/Question" button. The responses appear in the Dialog window. | |
| 2.2 Enter follow-up questions in the Prompt window either by typing or speaking. Tap the voice | |
| entry "Reset Voice Entry" button to enable additional voice entry. Then tap "Submit Prompt/Question". | |
| 2.3 If topic changes or when done chatting, tap the "Restart Conversation" button. | |
| 3. Solve math equations or logic problems providing step-by-step analysis: | |
| 3.1 Math: Make "solve" the first word in your prompt, followed by the equation, e.g., x^2 - x + 1 = 0 | |
| 3.2 Logic: Make "puzzle" the first word in your prompt, followed by a detailed description of a logic | |
| problem with the answer(s) you desire. | |
| 4. Make Image: | |
| 4.1 Enter description of desired image in prompt window via either typing or voice entry | |
| 4.2 Tap the "Make Image" button. This can take a few seconds. | |
| 4.3 There is a download button on the image display if your system supports file downloads. | |
| 4.4 When done viewing image, tap the "Restart Conversation" button | |
| 5. Analyze an Image you provide: | |
| 5.1 Enter what you want to know about the image in the prompt window. You can include instructions | |
| to write a poem about something in the image, for example. Or just say "what's in this image?" | |
| 5.2 Tap the "Upload Image to Analyze" button. | |
| 5.3 An empty image box will appear lower left. Drag or upload image into it. It offers web cam or camera | |
| input also. | |
| 5.4 The image should appear. This can take some time with a slow internet connection and large image. | |
| 5.5 Tap the "Submit Prompt/Question" button to start the analysis. This initiates a chat dialog and | |
| you can ask follow-up questions. However, the image is not re-analyzed for follow-up dialog. | |
| Hints: | |
| 1. Better chat and image results are obtained by including detailed descriptions and instructions | |
| in the prompt. | |
| 2. Always tap "Restart Conversation" before requesting an image or changing chat topics. | |
| 3. Audio input and output functions depend on the hardware capability of your device. | |
| 4. "Speak Dialog" will voice whatever is currently in the Dialog window. You can repeat it and you | |
| can edit what's to be spoken. Except: In a chat conversation, spoken dialog will only include | |
| the latest prompt/response ("YOU:/GPT:") sequence.''' | |
| def upload_image(prompt, user, password): | |
| if not (user in unames and password == pwdList[unames.index(user)]): | |
| return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"] | |
| if len(prompt) < 3: | |
| return [gr.Image(visible=False, interactive=True), "You must provide prompt/instructions (what to do with the image)"] | |
| return [gr.Image(visible=True, interactive=True), ''] | |
| def load_image(image, user): | |
| status = 'OK, image is ready! Tap "Submit Prompt/Question" to start analyzing' | |
| try: | |
| with open(image, 'rb') as image_file: | |
| base64_image = base64.b64encode(image_file.read()).decode('utf-8') | |
| fpath = dataDir + user + '_image.b64' | |
| with open(fpath, 'wt') as fp: | |
| fp.write(base64_image) | |
| except: | |
| status = 'Unable to upload image' | |
| return [fpath, status] | |
| def analyze_image(user, model, prompt): | |
| status = 'ok' | |
| try: | |
| with open(dataDir + user + '_image.b64', 'rt') as fp: | |
| base64_image = fp.read() | |
| except: | |
| status = "base64 image file not found" | |
| return [None, status] | |
| completion = Client().chat.completions.create( | |
| model=model, | |
| messages=[ | |
| { "role": "user", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": prompt | |
| }, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": f"data:image/jpeg;base64,{base64_image}", | |
| "detail": "high" | |
| } | |
| } | |
| ] | |
| } | |
| ], | |
| max_tokens= 500 | |
| ) | |
| # response = completion.choices[0].message.content | |
| return [completion, status] | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| history = gr.State([]) | |
| password = gr.State("") | |
| user = gr.State("unknown") | |
| model = gr.State("gpt-4o-mini") | |
| q = gr.State([]) | |
| qsave = gr.State([]) | |
| uploaded_image_file = gr.State('') | |
| def clean_up(user): | |
| flist = glob(dataDir + f'{user}_speech*.wav') | |
| for fpath in flist: | |
| try: | |
| os.remove(fpath) | |
| except: | |
| continue | |
| def initial_audio_output(txt, user): | |
| global digits | |
| global abbrevs | |
| if not user in unames: | |
| return [gr.Audio(sources=None), []] | |
| clean_up(user) | |
| q = [] | |
| if len(txt.strip()) < 5: | |
| return ['None', q] | |
| try: | |
| loc = txt.rindex('YOU:') | |
| txt = txt[loc:] | |
| except: | |
| pass | |
| for s,x in abbrevs.items(): | |
| txt = txt.replace(s, x) | |
| words_in = txt.replace('**', '').splitlines(False) | |
| words_out = [] | |
| for s in words_in: | |
| s = s.lstrip('- *@#$%^&_=+-') | |
| if len(s) > 0: | |
| loc = s.find(' ') | |
| if loc > 1: | |
| val = s[0:loc] | |
| isnum = val.replace('.','0').isdecimal() | |
| if isnum: | |
| if val.endswith('.'): | |
| val = val[:-1].replace('.',' point ') + '., ' | |
| else: | |
| val = val.replace('.', ' point ') + ', ' | |
| s = 'num'+ val + s[loc:] | |
| words_out.append(s) | |
| chunklist = [] | |
| for chunk in words_out: | |
| if chunk.strip() == '': | |
| continue | |
| isnumbered = chunk.startswith('num') | |
| number = '' | |
| loc = 0 | |
| if isnumbered: | |
| chunk = chunk[3:] | |
| loc = chunk.index(',') | |
| number = chunk[0:loc] | |
| chunk = chunk[loc:] | |
| locs = [] | |
| for i in range(1,len(chunk)-1): | |
| (a, b, c) = chunk[i-1:i+2] | |
| if a.isdecimal() and b == '.' and c.isdecimal(): | |
| locs.append(i) | |
| for i in locs: | |
| chunk = chunk[:i] + ' point ' + chunk[i+1:] | |
| if len(chunk) > 50: | |
| finechunks = chunk.split('.') | |
| for fchunk in finechunks: | |
| if isnumbered: | |
| fchunk = number + fchunk | |
| isnumbered = False | |
| if len(fchunk) > 0: | |
| if fchunk != '"': | |
| chunklist.append(fchunk) | |
| else: | |
| line = number + chunk | |
| if line != '"': | |
| chunklist.append(line) | |
| total_speech = 0 | |
| for chunk in chunklist: | |
| total_speech += len(chunk) | |
| with open(dataDir + user + '_speech.txt','a') as f: | |
| f.write(f'speech:{str(total_speech)}\n') | |
| chunk = chunklist[0] | |
| if chunk.strip() == '': | |
| return gr.Audio(sources=None) | |
| fname_list = gen_speech_file_names(user, len(chunklist)) | |
| q = fname_list.copy() | |
| qsave = fname_list.copy() | |
| fname = q.pop(0) | |
| if len(chunklist) > 0: | |
| threading.Thread(target=speech_worker, daemon=True, args=(chunklist[1:],fname_list[1:])).start() | |
| response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') | |
| with open(fname, 'wb') as fp: | |
| fp.write(response.content) | |
| return [fname, q] | |
| def gen_output_audio(q, user): | |
| try: | |
| fname = q.pop(0) | |
| except: | |
| final_clean_up(user) | |
| return [None, gr.Audio(sources=None)] | |
| if not os.path.exists(fname): | |
| sleep(3) | |
| if not os.path.exists(fname): | |
| response = Client().audio.speech.create(model="tts-1", voice="fable", | |
| input='Sorry, text-to-speech is responding too slow right now', speed=0.85, response_format='wav') | |
| with open(fname, 'wb') as fp: | |
| fp.write(response.content) | |
| q = [] | |
| return [fname, q] | |
| gr.Markdown('# GPT Chat') | |
| gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.') | |
| with gr.Row(): | |
| user_window = gr.Textbox(label = "User Name") | |
| user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window]) | |
| pwd_window = gr.Textbox(label = "Password") | |
| pwd_window.blur(updatePassword, inputs = pwd_window, outputs = [password, pwd_window]) | |
| help_button = gr.Button(value='Help & Hints') | |
| with gr.Row(): | |
| audio_widget = gr.Audio(type='filepath', format='wav',waveform_options=gr.WaveformOptions( | |
| show_recording_waveform=True), sources=['microphone'], scale = 3, label="Prompt/Question Voice Entry", max_length=120) | |
| reset_button = gr.ClearButton(value="Reset Voice Entry", scale=1) #new_func1() | |
| with gr.Row(): | |
| clear_button = gr.Button(value="Restart Conversation") | |
| # gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")], | |
| # value="gpt-3.5-turbo", label="GPT Model", interactive=True) | |
| button_do_image = gr.Button(value='Make Image') | |
| button_get_image = gr.Button(value='Upload Image to Analyze') | |
| submit_button = gr.Button(value="Submit Prompt/Question") | |
| speak_output = gr.Button(value="Speak Dialog", visible=False) | |
| prompt_window = gr.Textbox(label = "Prompt or Question") | |
| output_window = gr.Textbox(label = "Dialog") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze', type='filepath') | |
| with gr.Column(): | |
| image_window = gr.Image(visible=False, label='Generated Image') | |
| submit_button.click(chat, | |
| inputs=[prompt_window, user_window, password, history, output_window, model, uploaded_image_file], | |
| outputs=[history, output_window, prompt_window, model, uploaded_image_file]) | |
| clear_button.click(fn=new_conversation, inputs=user_window, | |
| outputs=[prompt_window, history, output_window, image_window, image_window2, uploaded_image_file]) | |
| audio_widget.stop_recording(fn=transcribe, inputs=[user_window, password, audio_widget], | |
| outputs=[prompt_window]) | |
| audio_widget.pause_recording(fn=pause_message, outputs=[prompt_window]) | |
| reset_button.add(audio_widget) | |
| audio_out = gr.Audio(autoplay=True, visible=False) | |
| audio_out.stop(fn=gen_output_audio, inputs=[q, user_window], outputs = [audio_out, q]) | |
| speak_output.click(fn=initial_audio_output, inputs=[output_window, user_window], outputs=[audio_out, q]) | |
| output_window.change(fn=set_speak_button, inputs=output_window,outputs=speak_output) | |
| button_do_image.click(fn=make_image, inputs=[prompt_window,user_window, password],outputs=[image_window, output_window]) | |
| image_window.change(fn=delete_image, inputs=[user]) | |
| help_button.click(fn=show_help, outputs=output_window) | |
| button_get_image.click(fn=upload_image,inputs = [prompt_window, user, password], outputs = [image_window2, output_window]) | |
| image_window2.upload(fn=load_image, inputs=[image_window2, user], outputs=[uploaded_image_file, output_window]) | |
| # demo.unload(final_clean_up(user)) | |
| demo.launch(share=True, allowed_paths=[dataDir], ssr_mode=False) | |