Spaces:
Running
Running
File size: 28,243 Bytes
770f5f7 169dbe5 839c46d 560c73e 1a61bb7 839c46d 169dbe5 1a61bb7 169dbe5 1a61bb7 169dbe5 1a61bb7 839c46d c152ad6 930c640 839c46d c152ad6 839c46d 62faa72 839c46d 169dbe5 839c46d 62faa72 3a2eaed 839c46d 62faa72 839c46d 62faa72 839c46d 5511924 839c46d 5511924 62faa72 839c46d f699477 62faa72 839c46d 1a61bb7 7d40ba4 1a61bb7 7d40ba4 1a61bb7 839c46d 3a2eaed 169dbe5 1a61bb7 62faa72 839c46d 3a2eaed 62faa72 0fb4a4f 62faa72 3a2eaed 62faa72 169dbe5 1a61bb7 169dbe5 839c46d 3a2eaed 839c46d 3a2eaed 839c46d 62faa72 839c46d 62faa72 839c46d c152ad6 839c46d 5511924 839c46d 5511924 839c46d 5511924 839c46d 560c73e 839c46d f699477 839c46d f699477 839c46d f699477 cd53d09 560c73e 0ac5c98 b34c7b3 560c73e 0ac5c98 62faa72 560c73e 62faa72 c152ad6 560c73e b34c7b3 560c73e b34c7b3 560c73e c152ad6 7d40ba4 c152ad6 7d40ba4 62faa72 7d40ba4 62faa72 5511924 62faa72 5511924 c152ad6 b34c7b3 c152ad6 62faa72 5511924 62faa72 5511924 62faa72 0fb4a4f 62faa72 0fb4a4f 62faa72 2f3fad7 62faa72 b56832d 62faa72 c152ad6 cd53d09 b34c7b3 839c46d 62faa72 839c46d b34c7b3 839c46d 1a61bb7 839c46d c152ad6 839c46d c152ad6 839c46d 560c73e 5511924 839c46d 62faa72 839c46d 560c73e c152ad6 62faa72 839c46d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import os
import gradio as gr
import openai
from numpy._core.defchararray import endswith, isdecimal
from openai import OpenAI
from dotenv import load_dotenv
from pathlib import Path
from time import sleep
import audioread
import queue
import threading
from glob import glob
import copy
import base64
import json
from PIL import Image
from io import BytesIO
from pydantic import BaseModel
import pprint
load_dotenv(override=True)
key = os.getenv('OPENAI_API_KEY')
users = os.getenv('LOGNAME')
unames = users.split(',')
pwds = os.getenv('PASSWORD')
pwdList = pwds.split(',')
site = os.getenv('SITE')
if site == 'local':
dp = Path('./data')
dp.mkdir(exist_ok=True)
dataDir = './data/'
else:
dp = Path('/data')
dp.mkdir(exist_ok=True)
dataDir = '/data/'
speak_file = dataDir + "speek.wav"
client = OpenAI(api_key = key)
#digits = ['zero: ','one: ','two: ','three: ','four: ','five: ','six: ','seven: ','eight: ','nine: ']
abbrevs = {'St. ' : 'Saint ', 'Mr. ': 'mister ', 'Mrs. ':'mussus ', 'Mr. ':'mister ', 'Ms. ':'mizz '}
special_chat_types = ['math', 'logic']
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
def solve(prompt, chatType):
tokens_in = 0
tokens_out = 0
tokens = 0
if chatType == 'math':
instruction = "You are a helpful math tutor. Guide the user through the solution step by step."
elif chatType == "logic":
instruction = "you are an expert in logic and reasoning. Guide the user through the solution step by step"
try:
completion = client.beta.chat.completions.parse(
model = 'gpt-4o-2024-08-06',
messages = [
{"role": "system", "content": instruction},
{"role": "user", "content": prompt}
],
response_format=MathReasoning,
max_tokens = 2000
)
tokens_in = completion.usage.prompt_tokens
tokens_out = completion.usage.completion_tokens
tokens = completion.usage.total_tokens
msg = completion.choices[0].message
if msg.parsed:
dr = msg.parsed.model_dump()
response = pprint.pformat(dr)
elif msg.refusal:
response = msg.refusal
except Exception as e:
if type(e) == openai.LengthFinishReasonError:
response = 'Too many tokens'
else:
response = str(e)
return (response, tokens_in, tokens_out, tokens)
def genUsageStats(do_reset=False):
result = []
ttotal4o_in = 0
ttotal4o_out = 0
ttotal4mini_in = 0
ttotal4mini_out = 0
totalAudio = 0
totalSpeech = 0
totalImages = 0
if do_reset:
dudPath = dataDir + '_speech.txt'
if os.path.exists(dudPath):
os.remove(dudPath)
for user in unames:
tokens4o_in = 0
tokens4o_out = 0
tokens4mini_in = 0
tokens4mini_out = 0
fp = dataDir + user + '_log.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(u, t) = line.split(':')
(t, m) = t.split('-')
(tin, tout) = t.split('/')
incount = int(tin)
outcount = int(tout)
if 'mini' in m:
tokens4mini_in += incount
tokens4mini_out += outcount
ttotal4mini_in += incount
ttotal4mini_out += outcount
else:
tokens4o_in += incount
tokens4o_out += outcount
ttotal4o_in += incount
ttotal4o_out += outcount
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading stats for user: {user}'
userAudio = 0
fp = dataDir + user + '_audio.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(dud, len) = line.split(':')
userAudio += int(len)
totalAudio += int(userAudio)
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading audio stats for user: {user}'
userSpeech = 0
fp = dataDir + user + '_speech.txt'
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
(dud, len) = line.split(':')
userSpeech += int(len)
totalSpeech += int(userSpeech)
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading speech stats for user: {user}'
user_images = 0
fp = image_count_path(user)
if os.path.exists(fp):
accessOk = False
for i in range(3):
try:
with open(fp) as f:
dataList = f.readlines()
if do_reset:
os.remove(fp)
else:
for line in dataList:
cnt = line.strip()
user_images += int(cnt)
totalImages += int(user_images)
accessOk = True
break
except:
sleep(3)
if not accessOk:
return f'File access failed reading image gen stats for user: {user}'
result.append([user, f'{tokens4mini_in}/{tokens4mini_out}', f'{tokens4o_in}/{tokens4o_out}', f'audio:{userAudio}',f'speech:{userSpeech}', f'images:{user_images}'])
result.append(['totals', f'{ttotal4mini_in}/{ttotal4mini_out}', f'{ttotal4o_in}/{ttotal4o_out}', f'audio:{totalAudio}',f'speech:{totalSpeech}', f'images:{totalImages}'])
return result
def new_conversation(user):
clean_up(user) # .wav files
flist = glob(f'{dataDir}{user}.png')
flist.extend(glob(f'{dataDir}{user}_image.b64'))
for fpath in flist:
if os.path.exists(fpath):
os.remove(fpath)
return [None, [], None, gr.Image(visible=False, value=None), gr.Image(visible=False, value=None), '']
def updatePassword(txt):
password = txt.lower().strip()
return [password, "*********"]
# def parse_math(txt):
# ref = 0
# loc = txt.find(r'\(')
# if loc == -1:
# return txt
# while (True):
# loc2 = txt[ref:].find(r'\)')
# if loc2 == -1:
# break
# loc = txt[ref:].find(r'\(')
# if loc > -1:
# loc2 += 2
# slice = txt[ref:][loc:loc2]
# frag = lconv.convert(slice)
# txt = txt[:loc+ref] + frag + txt[loc2+ref:]
# ref = len(txt[ref:loc]) + len(frag)
# return txt
def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_image_file=''):
image_gen_model = 'gpt-4o-2024-08-06'
user_window = user_window.lower().strip()
isBoss = False
if user_window == unames[0] and pwd_window == pwdList[0]:
isBoss = True
if prompt == 'stats':
response = genUsageStats()
return [past, response, None, gptModel, uploaded_image_file]
if prompt == 'reset':
response = genUsageStats(True)
return [past, response, None, gptModel, uploaded_image_file]
if prompt.startswith('gpt4'):
gptModel = 'gpt-4o-2024-08-06'
prompt = prompt[5:]
if prompt.startswith("clean"):
user = prompt[6:]
response = f'cleaned all .wav and .b64 files for {user}'
final_clean_up(user, True)
return [past, response, None, gptModel, uploaded_image_file]
if prompt.startswith('files'):
(log_cnt, wav_cnt, other_cnt, others, log_list) = list_permanent_files()
response = f'{log_cnt} log files\n{wav_cnt} .wav files\n{other_cnt} Other files:\n{others}\nlogs: {str(log_list)}'
return [past, response, None, gptModel, uploaded_image_file]
if user_window in unames and pwd_window == pwdList[unames.index(user_window)]:
chatType = 'normal'
prompt = prompt.strip()
if prompt.lower().startswith('solve'):
prompt = 'How do I solve ' + prompt[5:] + ' Do not use Latex for math expressions.'
chatType = 'math'
elif prompt.lower().startswith('puzzle'):
chatType = 'logic'
prompt = prompt[6:]
past.append({"role":"user", "content":prompt})
gen_image = (uploaded_image_file != '')
if chatType in special_chat_types:
(reply, tokens_in, tokens_out, tokens) = solve(prompt, chatType)
reporting_model = image_gen_model
elif not gen_image:
completion = client.chat.completions.create(model=gptModel,
messages=past)
reporting_model = gptModel
else:
(completion, msg) = analyze_image(user_window, image_gen_model, prompt)
uploaded_image_file= ''
reporting_model = image_gen_model
if not msg == 'ok':
return [past, msg, None, gptModel, uploaded_image_file]
if not chatType in special_chat_types:
reply = completion.choices[0].message.content
tokens_in = completion.usage.prompt_tokens
tokens_out = completion.usage.completion_tokens
tokens = completion.usage.total_tokens
response += "\n\nYOU: " + prompt + "\nGPT: " + reply
if isBoss:
response += f"\n{reporting_model}: tokens in/out = {tokens_in}/{tokens_out}"
if tokens > 40000:
response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON."
past.append({"role":"assistant", "content": reply})
accessOk = False
for i in range(3):
try:
dataFile = new_func(user_window)
with open(dataFile, 'a') as f:
m = '4o'
if 'mini' in reporting_model:
m = '4omini'
f.write(f'{user_window}:{tokens_in}/{tokens_out}-{m}\n')
accessOk = True
break
except Exception as e:
sleep(3)
if not accessOk:
response += f"\nDATA LOG FAILED, path = {dataFile}"
return [past, response , None, gptModel, uploaded_image_file]
else:
return [[], "User name and/or password are incorrect", prompt, gptModel, uploaded_image_file]
def new_func(user):
dataFile = dataDir + user + '_log.txt'
return dataFile
def image_count_path(user):
fpath = dataDir + user + '_image_count.txt'
return fpath
def transcribe(user, pwd, fpath):
user = user.lower().strip()
pwd = pwd.lower().strip()
if not (user in unames and pwd in pwdList):
return 'Bad credentials'
with audioread.audio_open(fpath) as audio:
duration = int(audio.duration)
if duration > 0:
with open(dataDir + user + '_audio.txt','a') as f:
f.write(f'audio:{str(duration)}\n')
with open(fpath,'rb') as audio_file:
transcript = client.audio.transcriptions.create(
model='whisper-1', file = audio_file ,response_format = 'text' )
reply = transcript
return str(reply)
def pause_message():
return "Audio input is paused. Resume or Stop as desired"
# def gen_output_audio(txt):
# if len(txt) < 10:
# txt = "This dialog is too short to mess with!"
# response = client.audio.speech.create(model="tts-1", voice="fable", input=txt)
# with open(speak_file, 'wb') as fp:
# fp.write(response.content)
# return speak_file
def set_speak_button(txt):
vis = False
if len(txt) > 2:
vis = True
return gr.Button(visible=vis)
def update_user(user_win):
user_win = user_win.lower().strip()
user = 'unknown'
for s in unames:
if user_win == s:
user = s
break
return [user, user]
def speech_worker(chunks=[],q=[]):
for chunk in chunks:
fpath = q.pop(0)
response = client.audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav')
with open(fpath, 'wb') as fp:
fp.write(response.content)
def gen_speech_file_names(user, cnt):
rv = []
for i in range(0, cnt):
rv.append(dataDir + f'{user}_speech{i}.wav')
return rv
def final_clean_up(user, do_b64 = False):
user = user.strip().lower()
if user == 'kill':
flist = glob(dataDir + '*')
elif user == 'all':
flist = glob(dataDir + '*_speech*.wav')
if do_b64:
flist.extend(glob(dataDir + '*.b64'))
else:
flist = glob(dataDir + f'{user}_speech*.wav')
if do_b64:
flist.append(dataDir + user + '_image.b64')
for fpath in flist:
try:
os.remove(fpath)
except:
continue
def delete_image(user):
fpath = dataDir + user + '.png'
if os.path.exists(fpath):
os.remove(fpath)
def list_permanent_files():
flist = os.listdir(dataDir)
others = []
log_cnt = 0
wav_cnt = 0
other_cnt = 0
list_logs = []
for fpath in flist:
if fpath.endswith('.txt'):
log_cnt += 1
list_logs.append(fpath)
elif fpath.endswith('.wav'):
wav_cnt += 1
else:
others.append(fpath)
other_cnt = len(others)
if log_cnt > 5:
list_logs = []
return (str(log_cnt), str(wav_cnt), str(other_cnt), str(others), list_logs)
def make_image(prompt, user, pwd):
user = user.lower().strip()
msg = 'Error: unable to create image.'
fpath = None
if user in unames and pwd == pwdList[unames.index(user)]:
if len(prompt.strip()) == 0:
return [gr.Image(value=None, visible=False), 'You must provide a prompt describing image you desire']
try:
response = client.images.generate(model='dall-e-2', prompt=prompt,size='512x512',
quality='standard', response_format='b64_json')
except Exception as ex:
msg = ex.message
return [gr.Image(visible=False, value=None), msg]
try:
image_data = response.data[0].b64_json
with Image.open(BytesIO(base64.b64decode(image_data))) as image:
fpath = dataDir + user + '.png'
image.save(fpath)
with open(image_count_path(user), 'at') as fp:
fp.write('1\n')
msg = 'Image created!'
except:
return [gr.Image(visible=False, value=None), msg]
else:
msg = 'Incorrect user name or password'
return [gr.Image(visible=False, value=None), msg]
return [gr.Image(visible=True, value=fpath), msg]
def show_help():
return '''
1. Gemeral:
1.1 Login with user name and password (not case-sensitive)
1.2 Type prompts (questions, instructions) into "Prompt or Question" window (OR) you can speak prompts by
tapping the audio "Record" button, saying your prompt, then tapping the "Stop" button.
Your prompt will appear in the Prompt window, and you can edit it there if needed.
1.3 Text in the "Dialog" window can be spoken by tapping the "Speak Dialog" button.
2. Chat:
2.1 Enter prompt and tap the "Submit Prompt/Question" button. The responses appear in the Dialog window.
2.2 Enter follow-up questions in the Prompt window either by typing or speaking. Tap the voice
entry "Reset Voice Entry" button to enable additional voice entry. Then tap "Submit Prompt/Question".
2.3 If topic changes or when done chatting, tap the "Restart Conversation" button.
3. Solve math equations or logic problems providing step-by-step analysis:
3.1 Math: Make "solve" the first word in your prompt, followed by the equation, e.g., x^2 - x + 1 = 0
3.2 Logic: Make "puzzle" the first word in your prompt, followed by a detailed description of a logic
problem with the answer(s) you desire.
4. Make Image:
4.1 Enter description of desired image in prompt window via either typing or voice entry
4.2 Tap the "Make Image" button. This can take a few seconds.
4.3 There is a download button on the image display if your system supports file downloads.
4.4 When done viewing image, tap the "Restart Conversation" button
5. Analyze an Image you provide:
5.1 Enter what you want to know about the image in the prompt window. You can include instructions
to write a poem about something in the image, for example. Or just say "what's in this image?"
5.2 Tap the "Upload Image to Analyze" button.
5.3 An empty image box will appear lower left. Drag or upload image into it. It offers web cam or camera
input also.
5.4 The image should appear. This can take some time with a slow internet connection and large image.
5.5 Tap the "Submit Prompt/Question" button to start the analysis. This initiates a chat dialog and
you can ask follow-up questions. However, the image is not re-analyzed for follow-up dialog.
Hints:
1. Better chat and image results are obtained by including detailed descriptions and instructions
in the prompt.
2. Always tap "Restart Conversation" before requesting an image or changing chat topics.
3. Audio input and output functions depend on the hardware capability of your device.
4. "Speak Dialog" will voice whatever is currently in the Dialog window. You can repeat it and you
can edit what's to be spoken. Except: In a chat conversation, spoken dialog will only include
the latest prompt/response ("YOU:/GPT:") sequence.'''
def upload_image(prompt, user, password):
if not (user in unames and password == pwdList[unames.index(user)]):
return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"]
if len(prompt) < 3:
return [gr.Image(visible=False, interactive=True), "You must provide prompt/instructions (what to do with the image)"]
return [gr.Image(visible=True, interactive=True), '']
def load_image(image, user):
status = 'OK, image is ready! Tap "Submit Prompt/Question" to start analyzing'
try:
with open(image, 'rb') as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
fpath = dataDir + user + '_image.b64'
with open(fpath, 'wt') as fp:
fp.write(base64_image)
except:
status = 'Unable to upload image'
return [fpath, status]
def analyze_image(user, model, prompt):
status = 'ok'
try:
with open(dataDir + user + '_image.b64', 'rt') as fp:
base64_image = fp.read()
except:
status = "base64 image file not found"
return [None, status]
completion = client.chat.completions.create(
model=model,
messages=[
{ "role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high"
}
}
]
}
],
max_tokens= 500
)
# response = completion.choices[0].message.content
return [completion, status]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
history = gr.State([])
password = gr.State("")
user = gr.State("unknown")
model = gr.State("gpt-4o-mini")
q = gr.State([])
qsave = gr.State([])
uploaded_image_file = gr.State('')
def clean_up(user):
flist = glob(dataDir + f'{user}_speech*.wav')
for fpath in flist:
try:
os.remove(fpath)
except:
continue
def initial_audio_output(txt, user):
global digits
global abbrevs
if not user in unames:
return [gr.Audio(sources=None), []]
clean_up(user)
q = []
if len(txt.strip()) < 5:
return ['None', q]
try:
loc = txt.rindex('YOU:')
txt = txt[loc:]
except:
pass
for s,x in abbrevs.items():
txt = txt.replace(s, x)
words_in = txt.replace('**', '').splitlines(False)
words_out = []
for s in words_in:
s = s.lstrip('- *@#$%^&_=+-')
if len(s) > 0:
loc = s.find(' ')
if loc > 1:
val = s[0:loc]
isnum = val.replace('.','0').isdecimal()
if isnum:
if val.endswith('.'):
val = val[:-1].replace('.',' point ') + '., '
else:
val = val.replace('.', ' point ') + ', '
s = 'num'+ val + s[loc:]
words_out.append(s)
chunklist = []
for chunk in words_out:
if chunk.strip() == '':
continue
isnumbered = chunk.startswith('num')
number = ''
loc = 0
if isnumbered:
chunk = chunk[3:]
loc = chunk.index(',')
number = chunk[0:loc]
chunk = chunk[loc:]
locs = []
for i in range(1,len(chunk)-1):
(a, b, c) = chunk[i-1:i+2]
if a.isdecimal() and b == '.' and c.isdecimal():
locs.append(i)
for i in locs:
chunk = chunk[:i] + ' point ' + chunk[i+1:]
if len(chunk) > 50:
finechunks = chunk.split('.')
for fchunk in finechunks:
if isnumbered:
fchunk = number + fchunk
isnumbered = False
if len(fchunk) > 0:
if fchunk != '"':
chunklist.append(fchunk)
else:
line = number + chunk
if line != '"':
chunklist.append(line)
total_speech = 0
for chunk in chunklist:
total_speech += len(chunk)
with open(dataDir + user + '_speech.txt','a') as f:
f.write(f'speech:{str(total_speech)}\n')
chunk = chunklist[0]
if chunk.strip() == '':
return gr.Audio(sources=None)
fname_list = gen_speech_file_names(user, len(chunklist))
q = fname_list.copy()
qsave = fname_list.copy()
fname = q.pop(0)
if len(chunklist) > 0:
threading.Thread(target=speech_worker, daemon=True, args=(chunklist[1:],fname_list[1:])).start()
response = client.audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav')
with open(fname, 'wb') as fp:
fp.write(response.content)
return [fname, q]
def gen_output_audio(q, user):
try:
fname = q.pop(0)
except:
final_clean_up(user)
return [None, gr.Audio(sources=None)]
return [fname, q]
gr.Markdown('# GPT Chat')
gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.')
with gr.Row():
user_window = gr.Textbox(label = "User Name")
user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window])
pwd_window = gr.Textbox(label = "Password")
pwd_window.blur(updatePassword, inputs = pwd_window, outputs = [password, pwd_window])
help_button = gr.Button(value='Help & Hints')
with gr.Row():
audio_widget = gr.Audio(type='filepath', format='wav',waveform_options=gr.WaveformOptions(
show_recording_waveform=True), sources=['microphone'], scale = 3, label="Prompt/Question Voice Entry", max_length=120)
reset_button = gr.ClearButton(value="Reset Voice Entry", scale=1) #new_func1()
with gr.Row():
clear_button = gr.Button(value="Restart Conversation")
# gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")],
# value="gpt-3.5-turbo", label="GPT Model", interactive=True)
button_do_image = gr.Button(value='Make Image')
button_get_image = gr.Button(value='Upload Image to Analyze')
submit_button = gr.Button(value="Submit Prompt/Question")
speak_output = gr.Button(value="Speak Dialog", visible=False)
prompt_window = gr.Textbox(label = "Prompt or Question")
output_window = gr.Textbox(label = "Dialog")
with gr.Row():
with gr.Column():
image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze', type='filepath')
with gr.Column():
image_window = gr.Image(visible=False, label='Generated Image')
submit_button.click(chat, inputs=[prompt_window, user_window, password, history, output_window, model, uploaded_image_file],
outputs=[history, output_window, prompt_window, model, uploaded_image_file])
clear_button.click(fn=new_conversation, inputs=user_window,
outputs=[prompt_window, history, output_window, image_window, image_window2, uploaded_image_file])
audio_widget.stop_recording(fn=transcribe, inputs=[user_window, password, audio_widget],
outputs=[prompt_window])
audio_widget.pause_recording(fn=pause_message, outputs=[prompt_window])
reset_button.add(audio_widget)
audio_out = gr.Audio(autoplay=True, visible=False)
audio_out.stop(fn=gen_output_audio, inputs=[q, user_window], outputs = [audio_out, q])
speak_output.click(fn=initial_audio_output, inputs=[output_window, user_window], outputs=[audio_out, q])
output_window.change(fn=set_speak_button, inputs=output_window,outputs=speak_output)
button_do_image.click(fn=make_image, inputs=[prompt_window,user_window, password],outputs=[image_window, output_window])
image_window.change(fn=delete_image, inputs=[user])
help_button.click(fn=show_help, outputs=output_window)
button_get_image.click(fn=upload_image,inputs = [prompt_window, user, password], outputs = [image_window2, output_window])
image_window2.upload(fn=load_image, inputs=[image_window2, user], outputs=[uploaded_image_file, output_window])
# demo.unload(final_clean_up(user))
demo.launch(share=True)
|