import os import socket import time import gradio as gr import numpy as np from PIL import Image, ImageDraw, ImageFont import base64 import requests import json # API for inferences DL4EO_API_URL = "https://dl4eo--ship-predict.modal.run" # Auth Token to access API DL4EO_API_KEY = 'dprY8HYkE9iXeCS4JnGjch5B' #os.environ['DL4EO_API_KEY'] # width of the boxes on image LINE_WIDTH = 2 # Check Gradio version print(f"Gradio version: {gr.__version__}") # Define the inference function def predict_image(image, threshold): if not isinstance(image, Image.Image): raise BaseException("predit_image(): input 'image' shoud be single RGB image in PIL format.") img = np.array(image) if len(img.shape) != 3 or img.shape[2] != 3: raise BaseException("predit_image(): input 'image' shoud be single RGB image in PIL format.") # Encode the image data as base64 image_base64 = base64.b64encode(np.ascontiguousarray(img)).decode() # Create a dictionary representing the JSON payload payload = { 'image': image_base64, 'shape': img.shape, 'threshold': threshold, } headers = { 'Authorization': 'Bearer ' + DL4EO_API_KEY, 'Content-Type': 'application/json' # Adjust the content type as needed } # Send the POST request to the API endpoint with the image file as binary payload response = requests.post(DL4EO_API_URL, json=payload, headers=headers) # Check the response status if response.status_code != 200: raise Exception( f"Received status code={response.status_code} in inference API" ) json_data = json.loads(response.content) detections = json_data['detections'] duration = json_data['duration'] # drow boxes on image draw = ImageDraw.Draw(image) # load font font = ImageFont.truetype("coolvetica_condensed_rg.otf", 24) for detection in detections: coords = detection['xyxyxyxy'] if len(coords) != 4: raise ValueError("Each detection should be a polygon with 4 coordinates (xyxyxyxy).") points = [(coord[0], coord[1]) for coord in coords] draw.polygon(points, outline="white", width=LINE_WIDTH) # make sure text is not inside the box min_x = min(point[0] for point in points) max_x = max(point[0] for point in points) min_y = min(point[1] for point in points) max_y = max(point[1] for point in points) text_width, text_height = draw.textbbox((0, 0), detection['class_name'], font=font)[2:] text_x = (min_x + max_x) / 2 - text_width / 2 draw.text((text_x, min_y - text_height - LINE_WIDTH), detection['class_name'] + ' | ' + str(round(detection['confidence'], 3)), fill="white", font=font) return image, img.shape, len(detections), duration # Define example images and their true labels for users to choose from example_data = [ ["./demo/12ab97857.jpg", 0.6], ["./demo/82f13510a.jpg", 0.6], ["./demo/836f35381.jpg", 0.6], ["./demo/848d2afef.jpg", 0.6], ["./demo/911b25478.jpg", 0.6], ["./demo/b86e4046f.jpg", 0.6], ["./demo/ce2220f49.jpg", 0.6], ["./demo/d9762ef5e.jpg", 0.6], ["./demo/fa613751e.jpg", 0.6], # Add more example images and thresholds as needed ] # Define CSS for some elements css = """ .image-preview { height: 768px !important; width: 768px !important; } """ TITLE = "Ship detection on SPOT satellite images (Oriented Bounding Boxes)" # Define the Gradio Interface demo = gr.Blocks(title=TITLE, css=css).queue() with demo: gr.Markdown(f"

{TITLE}

") with gr.Row(): with gr.Column(scale=0): input_image = gr.Image(type="pil", interactive=True) run_button = gr.Button(value="Run") with gr.Accordion("Advanced options", open=True): threshold = gr.Slider(label="Confidence threshold", minimum=0.0, maximum=1.0, value=0.60, step=0.01) dimensions = gr.Textbox(label="Image size", interactive=False) detections = gr.Textbox(label="Predicted objects", interactive=False) stopwatch = gr.Number(label="Execution time (sec.)", interactive=False, precision=3) with gr.Column(scale=2): output_image = gr.Image(type="pil", elem_classes='image-preview', interactive=False) run_button.click(fn=predict_image, inputs=[input_image, threshold], outputs=[output_image, dimensions, detections, stopwatch]) gr.Examples( examples=example_data, inputs = [input_image, threshold], outputs = [output_image, dimensions, detections, stopwatch], fn=predict_image, cache_examples=True, label='Try these images!' ) gr.Markdown("""

This demo is provided by Jeff Faudi and DL4EO. This model is based on the Ultralytics YOLOv8-OBB framework which provides oriented bounding boxes. We believe that oriented bouding boxes are better suited for detection of ships in satellite images. This model has been trained on the Airbus Ship Detection dataset available on Kaggle which provide SPOT extracts at 1.5 m. provided by Airbus DS. The associated license is CC-BY-SA-NC.

This demonstration CANNOT be used for commercial puposes. Please contact me for more information on how you could get access to a commercial grade model or API.

""") demo.launch( inline=False, show_api=False, debug=False )