File size: 5,975 Bytes
fcecfe1 59ab05f fcecfe1 2adb233 fcecfe1 f7dba65 fcecfe1 f7dba65 fcecfe1 f7dba65 59ab05f f7dba65 5f3c1c1 f7dba65 5f3c1c1 fcecfe1 f7dba65 59ab05f fcecfe1 f7dba65 fcecfe1 ae7a302 fcecfe1 59ab05f fcecfe1 59ab05f fcecfe1 59ab05f fcecfe1 2adb233 fcecfe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import os
import socket
import time
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
import requests
import json
# API for inferences
DL4EO_API_URL = "https://dl4eo--ship-predict.modal.run"
# Auth Token to access API
DL4EO_API_KEY = 'dprY8HYkE9iXeCS4JnGjch5B' #os.environ['DL4EO_API_KEY']
# width of the boxes on image
LINE_WIDTH = 2
# Check Gradio version
print(f"Gradio version: {gr.__version__}")
# Define the inference function
def predict_image(image, threshold):
if not isinstance(image, Image.Image):
raise BaseException("predit_image(): input 'image' shoud be single RGB image in PIL format.")
img = np.array(image)
if len(img.shape) != 3 or img.shape[2] != 3:
raise BaseException("predit_image(): input 'image' shoud be single RGB image in PIL format.")
# Encode the image data as base64
image_base64 = base64.b64encode(np.ascontiguousarray(img)).decode()
# Create a dictionary representing the JSON payload
payload = {
'image': image_base64,
'shape': img.shape,
'threshold': threshold,
}
headers = {
'Authorization': 'Bearer ' + DL4EO_API_KEY,
'Content-Type': 'application/json' # Adjust the content type as needed
}
# Send the POST request to the API endpoint with the image file as binary payload
response = requests.post(DL4EO_API_URL, json=payload, headers=headers)
# Check the response status
if response.status_code != 200:
raise Exception(
f"Received status code={response.status_code} in inference API"
)
json_data = json.loads(response.content)
detections = json_data['detections']
duration = json_data['duration']
# drow boxes on image
draw = ImageDraw.Draw(image)
# load font
font = ImageFont.truetype("coolvetica_condensed_rg.otf", 24)
for detection in detections:
coords = detection['xyxyxyxy']
if len(coords) != 4:
raise ValueError("Each detection should be a polygon with 4 coordinates (xyxyxyxy).")
points = [(coord[0], coord[1]) for coord in coords]
draw.polygon(points, outline="white", width=LINE_WIDTH)
# make sure text is not inside the box
min_x = min(point[0] for point in points)
max_x = max(point[0] for point in points)
min_y = min(point[1] for point in points)
max_y = max(point[1] for point in points)
text_width, text_height = draw.textbbox((0, 0), detection['class_name'], font=font)[2:]
text_x = (min_x + max_x) / 2 - text_width / 2
draw.text((text_x, min_y - text_height - LINE_WIDTH), detection['class_name'] + ' | ' + str(round(detection['confidence'], 3)), fill="white", font=font)
return image, img.shape, len(detections), duration
# Define example images and their true labels for users to choose from
example_data = [
["./demo/12ab97857.jpg", 0.6],
["./demo/82f13510a.jpg", 0.6],
["./demo/836f35381.jpg", 0.6],
["./demo/848d2afef.jpg", 0.6],
["./demo/911b25478.jpg", 0.6],
["./demo/b86e4046f.jpg", 0.6],
["./demo/ce2220f49.jpg", 0.6],
["./demo/d9762ef5e.jpg", 0.6],
["./demo/fa613751e.jpg", 0.6],
# Add more example images and thresholds as needed
]
# Define CSS for some elements
css = """
.image-preview {
height: 768px !important;
width: 768px !important;
}
"""
TITLE = "Ship detection on SPOT satellite images (Oriented Bounding Boxes)"
# Define the Gradio Interface
demo = gr.Blocks(title=TITLE, css=css).queue()
with demo:
gr.Markdown(f"<h1><center>{TITLE}<center><h1>")
with gr.Row():
with gr.Column(scale=0):
input_image = gr.Image(type="pil", interactive=True)
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=True):
threshold = gr.Slider(label="Confidence threshold", minimum=0.0, maximum=1.0, value=0.60, step=0.01)
dimensions = gr.Textbox(label="Image size", interactive=False)
detections = gr.Textbox(label="Predicted objects", interactive=False)
stopwatch = gr.Number(label="Execution time (sec.)", interactive=False, precision=3)
with gr.Column(scale=2):
output_image = gr.Image(type="pil", elem_classes='image-preview', interactive=False)
run_button.click(fn=predict_image, inputs=[input_image, threshold], outputs=[output_image, dimensions, detections, stopwatch])
gr.Examples(
examples=example_data,
inputs = [input_image, threshold],
outputs = [output_image, dimensions, detections, stopwatch],
fn=predict_image,
cache_examples=True,
label='Try these images!'
)
gr.Markdown("""
<p>This demo is provided by <a href='https://www.linkedin.com/in/faudi/'>Jeff Faudi</a> and <a href='https://www.dl4eo.com/'>DL4EO</a>.
This model is based on the <a href='https://www.ultralytics.com/yolo'>Ultralytics YOLOv8-OBB</a> framework which provides oriented bounding boxes.
We believe that oriented bouding boxes are better suited for detection of ships in satellite images. This model has been trained on the
<a href='https://www.kaggle.com/c/airbus-ship-detection/data'>Airbus Ship Detection dataset</a> available on Kaggle which provide SPOT extracts at 1.5 m.
provided by Airbus DS. The associated license is <a href='https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en'>CC-BY-SA-NC</a>.</p>
<p>This demonstration CANNOT be used for commercial puposes. Please contact <a href='mailto:[email protected]'>me</a> for more information on
how you could get access to a commercial grade model or API. </p>
""")
demo.launch(
inline=False,
show_api=False,
debug=False
)
|