dkatz2391's picture
Update app.py
c7a648a verified
raw
history blame
9.4 kB
# Version: 1.1.3 - Load pipeline at module level for Spaces environment
# Applied targeted fixes:
# - Removed unsupported inputs/outputs kwargs on demo.load/unload
# - Converted NumPy arrays to lists in pack_state for JSON safety
# - Fixed indentation in Blocks event-handlers
# - Verified clear() callbacks use only callback + outputs
# - Removed `torch_dtype` arg from from_pretrained
# - Moved pipeline initialization to module level so it's available in threads
import gradio as gr
import spaces
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
# --- Global Config ---
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# --- Initialize Trellis Pipeline at import time ---
print("[Startup] Loading Trellis pipeline...")
try:
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge"
)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
print("[Startup] Trellis pipeline loaded to GPU.")
else:
print("[Startup] Trellis pipeline loaded to CPU.")
except Exception as e:
print(f"❌ [Startup] Failed to load Trellis pipeline: {e}")
raise
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, created directory: {user_dir}")
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory already removed: {user_dir}")
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary."""
return {
'gaussian': {
**{k: v for k, v in gs.init_params.items()},
'_xyz': gs._xyz.detach().cpu().numpy().tolist(),
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(),
'_scaling': gs._scaling.detach().cpu().numpy().tolist(),
'_rotation': gs._rotation.detach().cpu().numpy().tolist(),
'_opacity': gs._opacity.detach().cpu().numpy().tolist(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy().tolist(),
'faces': mesh.faces.detach().cpu().numpy().tolist(),
},
}
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gd = state_dict['gaussian']
md = state_dict['mesh']
gs = Gaussian(
aabb=gd.get('aabb'), sh_degree=gd.get('sh_degree'),
mininum_kernel_size=gd.get('mininum_kernel_size'),
scaling_bias=gd.get('scaling_bias'), opacity_bias=gd.get('opacity_bias'),
scaling_activation=gd.get('scaling_activation')
)
gs._xyz = torch.tensor(np.array(gd['_xyz']), device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(np.array(gd['_features_dc']), device=device, dtype=torch.float32)
gs._scaling = torch.tensor(np.array(gd['_scaling']), device=device, dtype=torch.float32)
gs._rotation = torch.tensor(np.array(gd['_rotation']), device=device, dtype=torch.float32)
gs._opacity = torch.tensor(np.array(gd['_opacity']), device=device, dtype=torch.float32)
mesh = edict(
vertices=torch.tensor(np.array(md['vertices']), device=device, dtype=torch.float32),
faces=torch.tensor(np.array(md['faces']), device=device, dtype=torch.int64),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
return int(np.random.randint(0, MAX_SEED) if randomize_seed else seed)
@spaces.GPU
def text_to_3d(
prompt: str, seed: int,
ss_guidance_strength: float, ss_sampling_steps: int,
slat_guidance_strength: float, slat_sampling_steps: int,
req: gr.Request
) -> Tuple[dict, str]:
out = pipeline.run(
prompt, seed=seed,
formats=["gaussian","mesh"],
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength},
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength}
)
state = pack_state(out['gaussian'][0], out['mesh'][0])
vid_c = render_utils.render_video(out['gaussian'][0],num_frames=120)['color']
vid_n = render_utils.render_video(out['mesh'][0],num_frames=120)['normal']
vid = [np.concatenate([c.astype(np.uint8), n.astype(np.uint8)], axis=1) for c,n in zip(vid_c,vid_n)]
ud = os.path.join(TMP_DIR,str(req.session_hash)); os.makedirs(ud,exist_ok=True)
vp = os.path.join(ud,'sample.mp4'); imageio.mimsave(vp,vid,fps=15,quality=8)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return state, vp
@spaces.GPU(duration=120)
def extract_glb(state_dict: dict, mesh_simplify: float, texture_size: int, req: gr.Request):
gs, mesh = unpack_state(state_dict)
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
glb = postprocessing_utils.to_glb(gs,mesh,simplify=mesh_simplify,texture_size=texture_size,verbose=True)
gp = os.path.join(ud,'sample.glb'); glb.export(gp)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return gp, gp
@spaces.GPU
def extract_gaussian(state_dict: dict, req: gr.Request):
gs, _ = unpack_state(state_dict)
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True)
pp = os.path.join(ud,'sample.ply'); gs.save_ply(pp)
if torch.cuda.is_available(): torch.cuda.empty_cache()
return pp, pp
# --- Gradio UI ---
with gr.Blocks(delete_cache=(600,600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with TRELLIS
""")
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(label="Text Prompt", lines=5)
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("--- Stage 1 ---")
ss_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
ss_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
gr.Markdown("--- Stage 2 ---")
slat_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1)
slat_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1)
generate_btn = gr.Button("Generate 3D Preview")
with gr.Accordion("GLB Extraction Settings", open=True):
mesh_simplify = gr.Slider(0.9,0.99,label="Simplify",value=0.95,step=0.01)
texture_size = gr.Slider(512,2048,label="Texture Size",value=1024,step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
download_glb = gr.DownloadButton("Download GLB", interactive=False)
download_gs = gr.DownloadButton("Download Gaussian", interactive=False)
with gr.Column(scale=1):
video_output = gr.Video(autoplay=True,loop=True)
model_output = gr.Model3D()
# --- Handlers ---
demo.load(start_session)
demo.unload(end_session)
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed,seed], outputs=[seed]
).then(
text_to_3d,
inputs=[text_prompt,seed,ss_guidance_strength,ss_sampling_steps,slat_guidance_strength,slat_sampling_steps],
outputs=[output_buf,video_output]
).then(lambda: (extract_glb_btn.update(interactive=True),extract_gs_btn.update(interactive=True)), outputs=[extract_glb_btn,extract_gs_btn])
extract_glb_btn.click(
extract_glb,
inputs=[output_buf,mesh_simplify,texture_size],
outputs=[model_output,download_glb]
).then(lambda: download_glb.update(interactive=True), outputs=[download_glb])
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf], outputs=[model_output,download_gs]
).then(lambda: download_gs.update(interactive=True), outputs=[download_gs])
model_output.clear(lambda: (download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[download_glb,download_gs])
video_output.clear(lambda: (extract_glb_btn.update(interactive=False),extract_gs_btn.update(interactive=False),download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[extract_glb_btn,extract_gs_btn,download_glb,download_gs])
if __name__ == "__main__":
demo.queue().launch(debug=True)