Spaces:
Running
on
Zero
Running
on
Zero
# Version: 1.1.3 - Load pipeline at module level for Spaces environment | |
# Applied targeted fixes: | |
# - Removed unsupported inputs/outputs kwargs on demo.load/unload | |
# - Converted NumPy arrays to lists in pack_state for JSON safety | |
# - Fixed indentation in Blocks event-handlers | |
# - Verified clear() callbacks use only callback + outputs | |
# - Removed `torch_dtype` arg from from_pretrained | |
# - Moved pipeline initialization to module level so it's available in threads | |
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisTextTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import traceback | |
import sys | |
# --- Global Config --- | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
# --- Initialize Trellis Pipeline at import time --- | |
print("[Startup] Loading Trellis pipeline...") | |
try: | |
pipeline = TrellisTextTo3DPipeline.from_pretrained( | |
"JeffreyXiang/TRELLIS-text-xlarge" | |
) | |
if torch.cuda.is_available(): | |
pipeline = pipeline.to("cuda") | |
print("[Startup] Trellis pipeline loaded to GPU.") | |
else: | |
print("[Startup] Trellis pipeline loaded to CPU.") | |
except Exception as e: | |
print(f"❌ [Startup] Failed to load Trellis pipeline: {e}") | |
raise | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"Started session, created directory: {user_dir}") | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
print(f"Ended session, removed directory: {user_dir}") | |
except OSError as e: | |
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr) | |
else: | |
print(f"Ended session, directory already removed: {user_dir}") | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
"""Packs Gaussian and Mesh data into a JSON-serializable dictionary.""" | |
return { | |
'gaussian': { | |
**{k: v for k, v in gs.init_params.items()}, | |
'_xyz': gs._xyz.detach().cpu().numpy().tolist(), | |
'_features_dc': gs._features_dc.detach().cpu().numpy().tolist(), | |
'_scaling': gs._scaling.detach().cpu().numpy().tolist(), | |
'_rotation': gs._rotation.detach().cpu().numpy().tolist(), | |
'_opacity': gs._opacity.detach().cpu().numpy().tolist(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.detach().cpu().numpy().tolist(), | |
'faces': mesh.faces.detach().cpu().numpy().tolist(), | |
}, | |
} | |
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
gd = state_dict['gaussian'] | |
md = state_dict['mesh'] | |
gs = Gaussian( | |
aabb=gd.get('aabb'), sh_degree=gd.get('sh_degree'), | |
mininum_kernel_size=gd.get('mininum_kernel_size'), | |
scaling_bias=gd.get('scaling_bias'), opacity_bias=gd.get('opacity_bias'), | |
scaling_activation=gd.get('scaling_activation') | |
) | |
gs._xyz = torch.tensor(np.array(gd['_xyz']), device=device, dtype=torch.float32) | |
gs._features_dc = torch.tensor(np.array(gd['_features_dc']), device=device, dtype=torch.float32) | |
gs._scaling = torch.tensor(np.array(gd['_scaling']), device=device, dtype=torch.float32) | |
gs._rotation = torch.tensor(np.array(gd['_rotation']), device=device, dtype=torch.float32) | |
gs._opacity = torch.tensor(np.array(gd['_opacity']), device=device, dtype=torch.float32) | |
mesh = edict( | |
vertices=torch.tensor(np.array(md['vertices']), device=device, dtype=torch.float32), | |
faces=torch.tensor(np.array(md['faces']), device=device, dtype=torch.int64), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
return int(np.random.randint(0, MAX_SEED) if randomize_seed else seed) | |
def text_to_3d( | |
prompt: str, seed: int, | |
ss_guidance_strength: float, ss_sampling_steps: int, | |
slat_guidance_strength: float, slat_sampling_steps: int, | |
req: gr.Request | |
) -> Tuple[dict, str]: | |
out = pipeline.run( | |
prompt, seed=seed, | |
formats=["gaussian","mesh"], | |
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength}, | |
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength} | |
) | |
state = pack_state(out['gaussian'][0], out['mesh'][0]) | |
vid_c = render_utils.render_video(out['gaussian'][0],num_frames=120)['color'] | |
vid_n = render_utils.render_video(out['mesh'][0],num_frames=120)['normal'] | |
vid = [np.concatenate([c.astype(np.uint8), n.astype(np.uint8)], axis=1) for c,n in zip(vid_c,vid_n)] | |
ud = os.path.join(TMP_DIR,str(req.session_hash)); os.makedirs(ud,exist_ok=True) | |
vp = os.path.join(ud,'sample.mp4'); imageio.mimsave(vp,vid,fps=15,quality=8) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return state, vp | |
def extract_glb(state_dict: dict, mesh_simplify: float, texture_size: int, req: gr.Request): | |
gs, mesh = unpack_state(state_dict) | |
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True) | |
glb = postprocessing_utils.to_glb(gs,mesh,simplify=mesh_simplify,texture_size=texture_size,verbose=True) | |
gp = os.path.join(ud,'sample.glb'); glb.export(gp) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return gp, gp | |
def extract_gaussian(state_dict: dict, req: gr.Request): | |
gs, _ = unpack_state(state_dict) | |
ud = os.path.join(TMP_DIR, str(req.session_hash)); os.makedirs(ud, exist_ok=True) | |
pp = os.path.join(ud,'sample.ply'); gs.save_ply(pp) | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return pp, pp | |
# --- Gradio UI --- | |
with gr.Blocks(delete_cache=(600,600), title="TRELLIS Text-to-3D") as demo: | |
gr.Markdown(""" | |
# Text to 3D Asset with TRELLIS | |
""") | |
output_buf = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
text_prompt = gr.Textbox(label="Text Prompt", lines=5) | |
with gr.Accordion("Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("--- Stage 1 ---") | |
ss_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1) | |
ss_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1) | |
gr.Markdown("--- Stage 2 ---") | |
slat_guidance_strength = gr.Slider(0.0,15.0,label="Guidance Strength",value=7.5,step=0.1) | |
slat_sampling_steps = gr.Slider(10,50,label="Steps",value=25,step=1) | |
generate_btn = gr.Button("Generate 3D Preview") | |
with gr.Accordion("GLB Extraction Settings", open=True): | |
mesh_simplify = gr.Slider(0.9,0.99,label="Simplify",value=0.95,step=0.01) | |
texture_size = gr.Slider(512,2048,label="Texture Size",value=1024,step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
download_glb = gr.DownloadButton("Download GLB", interactive=False) | |
download_gs = gr.DownloadButton("Download Gaussian", interactive=False) | |
with gr.Column(scale=1): | |
video_output = gr.Video(autoplay=True,loop=True) | |
model_output = gr.Model3D() | |
# --- Handlers --- | |
demo.load(start_session) | |
demo.unload(end_session) | |
generate_event = generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed,seed], outputs=[seed] | |
).then( | |
text_to_3d, | |
inputs=[text_prompt,seed,ss_guidance_strength,ss_sampling_steps,slat_guidance_strength,slat_sampling_steps], | |
outputs=[output_buf,video_output] | |
).then(lambda: (extract_glb_btn.update(interactive=True),extract_gs_btn.update(interactive=True)), outputs=[extract_glb_btn,extract_gs_btn]) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf,mesh_simplify,texture_size], | |
outputs=[model_output,download_glb] | |
).then(lambda: download_glb.update(interactive=True), outputs=[download_glb]) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], outputs=[model_output,download_gs] | |
).then(lambda: download_gs.update(interactive=True), outputs=[download_gs]) | |
model_output.clear(lambda: (download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[download_glb,download_gs]) | |
video_output.clear(lambda: (extract_glb_btn.update(interactive=False),extract_gs_btn.update(interactive=False),download_glb.update(interactive=False),download_gs.update(interactive=False)), outputs=[extract_glb_btn,extract_gs_btn,download_glb,download_gs]) | |
if __name__ == "__main__": | |
demo.queue().launch(debug=True) | |