Spaces:
Running
on
Zero
Running
on
Zero
| import torch.nn as nn | |
| # FP16 utils | |
| from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors | |
| def make_master_params(model_params): | |
| """ | |
| Copy model parameters into a inflated tensor of full-precision parameters. | |
| """ | |
| master_params = _flatten_dense_tensors( | |
| [param.detach().float() for param in model_params] | |
| ) | |
| master_params = nn.Parameter(master_params) | |
| master_params.requires_grad = True | |
| return [master_params] | |
| def unflatten_master_params(model_params, master_params): | |
| """ | |
| Unflatten the master parameters to look like model_params. | |
| """ | |
| return _unflatten_dense_tensors(master_params[0].detach(), model_params) | |
| def model_params_to_master_params(model_params, master_params): | |
| """ | |
| Copy the model parameter data into the master parameters. | |
| """ | |
| master_params[0].detach().copy_( | |
| _flatten_dense_tensors([param.detach().float() for param in model_params]) | |
| ) | |
| def master_params_to_model_params(model_params, master_params): | |
| """ | |
| Copy the master parameter data back into the model parameters. | |
| """ | |
| for param, master_param in zip( | |
| model_params, _unflatten_dense_tensors(master_params[0].detach(), model_params) | |
| ): | |
| param.detach().copy_(master_param) | |
| def model_grads_to_master_grads(model_params, master_params): | |
| """ | |
| Copy the gradients from the model parameters into the master parameters | |
| from make_master_params(). | |
| """ | |
| master_params[0].grad = _flatten_dense_tensors( | |
| [param.grad.data.detach().float() for param in model_params] | |
| ) | |
| def zero_grad(model_params): | |
| for param in model_params: | |
| if param.grad is not None: | |
| if param.grad.grad_fn is not None: | |
| param.grad.detach_() | |
| else: | |
| param.grad.requires_grad_(False) | |
| param.grad.zero_() | |
| # LR Schedulers | |
| from torch.optim.lr_scheduler import LambdaLR | |
| class LinearWarmupLRScheduler(LambdaLR): | |
| def __init__(self, optimizer, warmup_steps, last_epoch=-1): | |
| self.warmup_steps = warmup_steps | |
| super(LinearWarmupLRScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) | |
| def lr_lambda(self, current_step): | |
| if current_step < self.warmup_steps: | |
| return float(current_step + 1) / self.warmup_steps | |
| return 1.0 | |