Spaces:
Running
on
Zero
Running
on
Zero
| from abc import abstractmethod | |
| import os | |
| import time | |
| import json | |
| import torch | |
| import torch.distributed as dist | |
| from torch.utils.data import DataLoader | |
| import numpy as np | |
| from torchvision import utils | |
| from torch.utils.tensorboard import SummaryWriter | |
| from .utils import * | |
| from ..utils.general_utils import * | |
| from ..utils.data_utils import recursive_to_device, cycle, ResumableSampler | |
| class Trainer: | |
| """ | |
| Base class for training. | |
| """ | |
| def __init__(self, | |
| models, | |
| dataset, | |
| *, | |
| output_dir, | |
| load_dir, | |
| step, | |
| max_steps, | |
| batch_size=None, | |
| batch_size_per_gpu=None, | |
| batch_split=None, | |
| optimizer={}, | |
| lr_scheduler=None, | |
| elastic=None, | |
| grad_clip=None, | |
| ema_rate=0.9999, | |
| fp16_mode='inflat_all', | |
| fp16_scale_growth=1e-3, | |
| finetune_ckpt=None, | |
| log_param_stats=False, | |
| prefetch_data=True, | |
| i_print=1000, | |
| i_log=500, | |
| i_sample=10000, | |
| i_save=10000, | |
| i_ddpcheck=10000, | |
| **kwargs | |
| ): | |
| assert batch_size is not None or batch_size_per_gpu is not None, 'Either batch_size or batch_size_per_gpu must be specified.' | |
| self.models = models | |
| self.dataset = dataset | |
| self.batch_split = batch_split if batch_split is not None else 1 | |
| self.max_steps = max_steps | |
| self.optimizer_config = optimizer | |
| self.lr_scheduler_config = lr_scheduler | |
| self.elastic_controller_config = elastic | |
| self.grad_clip = grad_clip | |
| self.ema_rate = [ema_rate] if isinstance(ema_rate, float) else ema_rate | |
| self.fp16_mode = fp16_mode | |
| self.fp16_scale_growth = fp16_scale_growth | |
| self.log_param_stats = log_param_stats | |
| self.prefetch_data = prefetch_data | |
| if self.prefetch_data: | |
| self._data_prefetched = None | |
| self.output_dir = output_dir | |
| self.i_print = i_print | |
| self.i_log = i_log | |
| self.i_sample = i_sample | |
| self.i_save = i_save | |
| self.i_ddpcheck = i_ddpcheck | |
| if dist.is_initialized(): | |
| # Multi-GPU params | |
| self.world_size = dist.get_world_size() | |
| self.rank = dist.get_rank() | |
| self.local_rank = dist.get_rank() % torch.cuda.device_count() | |
| self.is_master = self.rank == 0 | |
| else: | |
| # Single-GPU params | |
| self.world_size = 1 | |
| self.rank = 0 | |
| self.local_rank = 0 | |
| self.is_master = True | |
| self.batch_size = batch_size if batch_size_per_gpu is None else batch_size_per_gpu * self.world_size | |
| self.batch_size_per_gpu = batch_size_per_gpu if batch_size_per_gpu is not None else batch_size // self.world_size | |
| assert self.batch_size % self.world_size == 0, 'Batch size must be divisible by the number of GPUs.' | |
| assert self.batch_size_per_gpu % self.batch_split == 0, 'Batch size per GPU must be divisible by batch split.' | |
| self.init_models_and_more(**kwargs) | |
| self.prepare_dataloader(**kwargs) | |
| # Load checkpoint | |
| self.step = 0 | |
| if load_dir is not None and step is not None: | |
| self.load(load_dir, step) | |
| elif finetune_ckpt is not None: | |
| self.finetune_from(finetune_ckpt) | |
| if self.is_master: | |
| os.makedirs(os.path.join(self.output_dir, 'ckpts'), exist_ok=True) | |
| os.makedirs(os.path.join(self.output_dir, 'samples'), exist_ok=True) | |
| self.writer = SummaryWriter(os.path.join(self.output_dir, 'tb_logs')) | |
| if self.world_size > 1: | |
| self.check_ddp() | |
| if self.is_master: | |
| print('\n\nTrainer initialized.') | |
| print(self) | |
| def device(self): | |
| for _, model in self.models.items(): | |
| if hasattr(model, 'device'): | |
| return model.device | |
| return next(list(self.models.values())[0].parameters()).device | |
| def init_models_and_more(self, **kwargs): | |
| """ | |
| Initialize models and more. | |
| """ | |
| pass | |
| def prepare_dataloader(self, **kwargs): | |
| """ | |
| Prepare dataloader. | |
| """ | |
| self.data_sampler = ResumableSampler( | |
| self.dataset, | |
| shuffle=True, | |
| ) | |
| self.dataloader = DataLoader( | |
| self.dataset, | |
| batch_size=self.batch_size_per_gpu, | |
| num_workers=int(np.ceil(os.cpu_count() / torch.cuda.device_count())), | |
| pin_memory=True, | |
| drop_last=True, | |
| persistent_workers=True, | |
| collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None, | |
| sampler=self.data_sampler, | |
| ) | |
| self.data_iterator = cycle(self.dataloader) | |
| def load(self, load_dir, step=0): | |
| """ | |
| Load a checkpoint. | |
| Should be called by all processes. | |
| """ | |
| pass | |
| def save(self): | |
| """ | |
| Save a checkpoint. | |
| Should be called only by the rank 0 process. | |
| """ | |
| pass | |
| def finetune_from(self, finetune_ckpt): | |
| """ | |
| Finetune from a checkpoint. | |
| Should be called by all processes. | |
| """ | |
| pass | |
| def run_snapshot(self, num_samples, batch_size=4, verbose=False, **kwargs): | |
| """ | |
| Run a snapshot of the model. | |
| """ | |
| pass | |
| def visualize_sample(self, sample): | |
| """ | |
| Convert a sample to an image. | |
| """ | |
| if hasattr(self.dataset, 'visualize_sample'): | |
| return self.dataset.visualize_sample(sample) | |
| else: | |
| return sample | |
| def snapshot_dataset(self, num_samples=100): | |
| """ | |
| Sample images from the dataset. | |
| """ | |
| dataloader = torch.utils.data.DataLoader( | |
| self.dataset, | |
| batch_size=num_samples, | |
| num_workers=0, | |
| shuffle=True, | |
| collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None, | |
| ) | |
| data = next(iter(dataloader)) | |
| data = recursive_to_device(data, self.device) | |
| vis = self.visualize_sample(data) | |
| if isinstance(vis, dict): | |
| save_cfg = [(f'dataset_{k}', v) for k, v in vis.items()] | |
| else: | |
| save_cfg = [('dataset', vis)] | |
| for name, image in save_cfg: | |
| utils.save_image( | |
| image, | |
| os.path.join(self.output_dir, 'samples', f'{name}.jpg'), | |
| nrow=int(np.sqrt(num_samples)), | |
| normalize=True, | |
| value_range=self.dataset.value_range, | |
| ) | |
| def snapshot(self, suffix=None, num_samples=64, batch_size=4, verbose=False): | |
| """ | |
| Sample images from the model. | |
| NOTE: This function should be called by all processes. | |
| """ | |
| if self.is_master: | |
| print(f'\nSampling {num_samples} images...', end='') | |
| if suffix is None: | |
| suffix = f'step{self.step:07d}' | |
| # Assign tasks | |
| num_samples_per_process = int(np.ceil(num_samples / self.world_size)) | |
| samples = self.run_snapshot(num_samples_per_process, batch_size=batch_size, verbose=verbose) | |
| # Preprocess images | |
| for key in list(samples.keys()): | |
| if samples[key]['type'] == 'sample': | |
| vis = self.visualize_sample(samples[key]['value']) | |
| if isinstance(vis, dict): | |
| for k, v in vis.items(): | |
| samples[f'{key}_{k}'] = {'value': v, 'type': 'image'} | |
| del samples[key] | |
| else: | |
| samples[key] = {'value': vis, 'type': 'image'} | |
| # Gather results | |
| if self.world_size > 1: | |
| for key in samples.keys(): | |
| samples[key]['value'] = samples[key]['value'].contiguous() | |
| if self.is_master: | |
| all_images = [torch.empty_like(samples[key]['value']) for _ in range(self.world_size)] | |
| else: | |
| all_images = [] | |
| dist.gather(samples[key]['value'], all_images, dst=0) | |
| if self.is_master: | |
| samples[key]['value'] = torch.cat(all_images, dim=0)[:num_samples] | |
| # Save images | |
| if self.is_master: | |
| os.makedirs(os.path.join(self.output_dir, 'samples', suffix), exist_ok=True) | |
| for key in samples.keys(): | |
| if samples[key]['type'] == 'image': | |
| utils.save_image( | |
| samples[key]['value'], | |
| os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'), | |
| nrow=int(np.sqrt(num_samples)), | |
| normalize=True, | |
| value_range=self.dataset.value_range, | |
| ) | |
| elif samples[key]['type'] == 'number': | |
| min = samples[key]['value'].min() | |
| max = samples[key]['value'].max() | |
| images = (samples[key]['value'] - min) / (max - min) | |
| images = utils.make_grid( | |
| images, | |
| nrow=int(np.sqrt(num_samples)), | |
| normalize=False, | |
| ) | |
| save_image_with_notes( | |
| images, | |
| os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'), | |
| notes=f'{key} min: {min}, max: {max}', | |
| ) | |
| if self.is_master: | |
| print(' Done.') | |
| def update_ema(self): | |
| """ | |
| Update exponential moving average. | |
| Should only be called by the rank 0 process. | |
| """ | |
| pass | |
| def check_ddp(self): | |
| """ | |
| Check if DDP is working properly. | |
| Should be called by all process. | |
| """ | |
| pass | |
| def training_losses(**mb_data): | |
| """ | |
| Compute training losses. | |
| """ | |
| pass | |
| def load_data(self): | |
| """ | |
| Load data. | |
| """ | |
| if self.prefetch_data: | |
| if self._data_prefetched is None: | |
| self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True) | |
| data = self._data_prefetched | |
| self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True) | |
| else: | |
| data = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True) | |
| # if the data is a dict, we need to split it into multiple dicts with batch_size_per_gpu | |
| if isinstance(data, dict): | |
| if self.batch_split == 1: | |
| data_list = [data] | |
| else: | |
| batch_size = list(data.values())[0].shape[0] | |
| data_list = [ | |
| {k: v[i * batch_size // self.batch_split:(i + 1) * batch_size // self.batch_split] for k, v in data.items()} | |
| for i in range(self.batch_split) | |
| ] | |
| elif isinstance(data, list): | |
| data_list = data | |
| else: | |
| raise ValueError('Data must be a dict or a list of dicts.') | |
| return data_list | |
| def run_step(self, data_list): | |
| """ | |
| Run a training step. | |
| """ | |
| pass | |
| def run(self): | |
| """ | |
| Run training. | |
| """ | |
| if self.is_master: | |
| print('\nStarting training...') | |
| self.snapshot_dataset() | |
| if self.step == 0: | |
| self.snapshot(suffix='init') | |
| else: # resume | |
| self.snapshot(suffix=f'resume_step{self.step:07d}') | |
| log = [] | |
| time_last_print = 0.0 | |
| time_elapsed = 0.0 | |
| while self.step < self.max_steps: | |
| time_start = time.time() | |
| data_list = self.load_data() | |
| step_log = self.run_step(data_list) | |
| time_end = time.time() | |
| time_elapsed += time_end - time_start | |
| self.step += 1 | |
| # Print progress | |
| if self.is_master and self.step % self.i_print == 0: | |
| speed = self.i_print / (time_elapsed - time_last_print) * 3600 | |
| columns = [ | |
| f'Step: {self.step}/{self.max_steps} ({self.step / self.max_steps * 100:.2f}%)', | |
| f'Elapsed: {time_elapsed / 3600:.2f} h', | |
| f'Speed: {speed:.2f} steps/h', | |
| f'ETA: {(self.max_steps - self.step) / speed:.2f} h', | |
| ] | |
| print(' | '.join([c.ljust(25) for c in columns]), flush=True) | |
| time_last_print = time_elapsed | |
| # Check ddp | |
| if self.world_size > 1 and self.i_ddpcheck is not None and self.step % self.i_ddpcheck == 0: | |
| self.check_ddp() | |
| # Sample images | |
| if self.step % self.i_sample == 0: | |
| self.snapshot() | |
| if self.is_master: | |
| log.append((self.step, {})) | |
| # Log time | |
| log[-1][1]['time'] = { | |
| 'step': time_end - time_start, | |
| 'elapsed': time_elapsed, | |
| } | |
| # Log losses | |
| if step_log is not None: | |
| log[-1][1].update(step_log) | |
| # Log scale | |
| if self.fp16_mode == 'amp': | |
| log[-1][1]['scale'] = self.scaler.get_scale() | |
| elif self.fp16_mode == 'inflat_all': | |
| log[-1][1]['log_scale'] = self.log_scale | |
| # Save log | |
| if self.step % self.i_log == 0: | |
| ## save to log file | |
| log_str = '\n'.join([ | |
| f'{step}: {json.dumps(log)}' for step, log in log | |
| ]) | |
| with open(os.path.join(self.output_dir, 'log.txt'), 'a') as log_file: | |
| log_file.write(log_str + '\n') | |
| # show with mlflow | |
| log_show = [l for _, l in log if not dict_any(l, lambda x: np.isnan(x))] | |
| log_show = dict_reduce(log_show, lambda x: np.mean(x)) | |
| log_show = dict_flatten(log_show, sep='/') | |
| for key, value in log_show.items(): | |
| self.writer.add_scalar(key, value, self.step) | |
| log = [] | |
| # Save checkpoint | |
| if self.step % self.i_save == 0: | |
| self.save() | |
| if self.is_master: | |
| self.snapshot(suffix='final') | |
| self.writer.close() | |
| print('Training finished.') | |
| def profile(self, wait=2, warmup=3, active=5): | |
| """ | |
| Profile the training loop. | |
| """ | |
| with torch.profiler.profile( | |
| schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1), | |
| on_trace_ready=torch.profiler.tensorboard_trace_handler(os.path.join(self.output_dir, 'profile')), | |
| profile_memory=True, | |
| with_stack=True, | |
| ) as prof: | |
| for _ in range(wait + warmup + active): | |
| self.run_step() | |
| prof.step() | |