File size: 21,768 Bytes
9df9f29
1809fe4
9df9f29
1809fe4
 
 
9df9f29
 
 
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
 
1809fe4
9df9f29
 
 
 
 
 
 
 
1809fe4
 
 
 
9df9f29
1809fe4
 
 
 
 
 
9df9f29
 
 
 
1809fe4
 
9df9f29
1809fe4
9df9f29
 
1809fe4
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
9df9f29
1809fe4
9df9f29
1809fe4
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
9df9f29
1809fe4
988efc8
 
 
 
 
 
 
 
 
 
9df9f29
988efc8
63ce34f
1809fe4
 
988efc8
1809fe4
9df9f29
 
63ce34f
9df9f29
 
 
 
 
 
 
 
 
 
 
1809fe4
63ce34f
1809fe4
63ce34f
9df9f29
63ce34f
9df9f29
63ce34f
 
 
9df9f29
63ce34f
 
 
1809fe4
988efc8
9df9f29
63ce34f
9df9f29
63ce34f
9df9f29
63ce34f
9df9f29
 
63ce34f
 
9df9f29
1809fe4
9df9f29
 
1809fe4
 
 
 
 
 
 
 
 
9df9f29
 
 
1809fe4
 
 
9df9f29
1809fe4
9df9f29
1809fe4
 
 
 
 
 
 
 
9df9f29
 
 
 
 
 
 
1809fe4
9df9f29
 
 
1809fe4
9df9f29
 
 
1809fe4
9df9f29
1809fe4
 
9df9f29
1809fe4
 
 
 
 
 
 
 
9df9f29
1809fe4
9df9f29
1809fe4
9df9f29
1809fe4
 
 
 
 
 
 
9df9f29
 
 
1809fe4
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
9df9f29
 
 
 
 
 
 
1809fe4
9df9f29
 
 
1809fe4
9df9f29
 
 
1809fe4
9df9f29
 
1809fe4
9df9f29
1809fe4
 
 
 
9df9f29
1809fe4
9df9f29
1809fe4
9df9f29
63ce34f
 
 
 
1809fe4
 
 
9df9f29
 
 
1809fe4
63ce34f
988efc8
3447081
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
3447081
1809fe4
9df9f29
1809fe4
9df9f29
 
3447081
1809fe4
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
9df9f29
1809fe4
 
 
 
 
 
 
 
 
 
 
 
9df9f29
1809fe4
 
 
9df9f29
1809fe4
9df9f29
 
1809fe4
9df9f29
 
 
 
1809fe4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Version: 1.1.3 - API State Fix + DEBUG (Video Disabled) + unload() Fix (2025-05-04)
# Changes:
# - FIXED TypeError in demo.unload() by removing incorrect 'inputs'/'outputs' arguments.
# - ENSURED `import spaces` is present for the @spaces.GPU decorator.
# - TEMPORARY DEBUGGING STEP: Commented out video rendering in `text_to_3d`
#   and return None for video_path to isolate the "Session not found" error.
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`.
# - Modified `extract_glb`/`extract_gaussian` to accept `state_dict: dict`.
# - Kept Gradio UI bindings using `output_buf`.
# - Added minor safety checks and logging.

import gradio as gr
import spaces  # <<<--- ENSURE THIS IMPORT IS PRESENT

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original

from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

import traceback
import sys


MAX_SEED = np.iinfo(np.int32).max
# Use standard /tmp directory which is usually available in container environments
TMP_DIR = '/tmp/gradio_sessions'
print(f"Using temporary directory: {TMP_DIR}")
# Ensure the base temp directory exists
try:
    os.makedirs(TMP_DIR, exist_ok=True)
except OSError as e:
    print(f"Warning: Could not create base temp directory {TMP_DIR}: {e}", file=sys.stderr)
    # Potentially fall back or exit if temp dir is critical
    TMP_DIR = '.' # Fallback to current directory (less ideal)
    print(f"Warning: Falling back to use current directory for temp files: {os.path.abspath(TMP_DIR)}")


def start_session(req: gr.Request):
    """Creates a temporary directory for the user session."""
    user_dir = None # Initialize
    try:
        session_hash = req.session_hash
        if not session_hash:
             session_hash = f"no_session_{np.random.randint(10000, 99999)}"
             print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")

        # Ensure TMP_DIR exists before joining path
        if not os.path.exists(TMP_DIR):
             os.makedirs(TMP_DIR, exist_ok=True)

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        os.makedirs(user_dir, exist_ok=True)
        print(f"Started session, ensured directory exists: {user_dir}")
    except Exception as e:
        print(f"Error in start_session creating directory '{user_dir}': {e}", file=sys.stderr)
        traceback.print_exc()


def end_session(req: gr.Request):
    """Removes the temporary directory for the user session."""
    user_dir = None # Initialize
    try:
        session_hash = req.session_hash
        if not session_hash:
            print("Warning: No session_hash in end_session request, cannot clean up.")
            return

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        if os.path.exists(user_dir) and os.path.isdir(user_dir): # Extra check if it's a directory
            try:
                shutil.rmtree(user_dir)
                print(f"Ended session, removed directory: {user_dir}")
            except OSError as e:
                print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
        else:
            print(f"Ended session, directory not found or not a directory: {user_dir}")
    except Exception as e:
        print(f"Error in end_session cleaning directory '{user_dir}': {e}", file=sys.stderr)


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    """Packs Gaussian and Mesh data into a serializable dictionary."""
    print("[pack_state] Packing state to dictionary...")
    try:
        packed_data = {
            'gaussian': {
                **{k: v for k, v in gs.init_params.items()},
                '_xyz': gs._xyz.detach().cpu().numpy(),
                '_features_dc': gs._features_dc.detach().cpu().numpy(),
                '_scaling': gs._scaling.detach().cpu().numpy(),
                '_rotation': gs._rotation.detach().cpu().numpy(),
                '_opacity': gs._opacity.detach().cpu().numpy(),
            },
            'mesh': {
                'vertices': mesh.vertices.detach().cpu().numpy(),
                'faces': mesh.faces.detach().cpu().numpy(),
            },
        }
        print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
        return packed_data
    except Exception as e:
        print(f"Error during pack_state: {e}", file=sys.stderr)
        traceback.print_exc()
        raise


def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
    """Unpacks Gaussian and Mesh data from a dictionary."""
    print("[unpack_state] Unpacking state from dictionary...")
    try:
        if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
            raise ValueError("Invalid state_dict structure passed to unpack_state.")

        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"[unpack_state] Using device: {device}")

        gauss_data = state_dict['gaussian']
        mesh_data = state_dict['mesh']

        gs = Gaussian(
            aabb=gauss_data.get('aabb'),
            sh_degree=gauss_data.get('sh_degree'),
            mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
            scaling_bias=gauss_data.get('scaling_bias'),
            opacity_bias=gauss_data.get('opacity_bias'),
            scaling_activation=gauss_data.get('scaling_activation'),
        )
        gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
        gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
        gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
        gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
        gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
        print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")

        mesh = edict(
            vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
            faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64),
        )
        print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")

        return gs, mesh
    except Exception as e:
        print(f"Error during unpack_state: {e}", file=sys.stderr)
        traceback.print_exc()
        raise


def get_seed(randomize_seed: bool, seed: int) -> int:
    """Gets a seed value, randomizing if requested."""
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
    return int(new_seed)


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, Optional[str]]:
    """
    Generates a 3D model (Gaussian and Mesh) from text and returns a
    serializable state dictionary and potentially a video preview path.
    >>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
    """
    print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
    user_dir = None # Initialize
    state_dict = None # Initialize
    try:
        session_hash = req.session_hash
        if not session_hash:
            session_hash = f"no_session_{np.random.randint(10000, 99999)}"
            print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")

        # Ensure user directory exists
        user_dir = os.path.join(TMP_DIR, str(session_hash))
        os.makedirs(user_dir, exist_ok=True)
        print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")

        # --- Generation Pipeline ---
        print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
        outputs = pipeline.run(
            prompt=prompt,
            seed=seed,
            formats=["gaussian", "mesh"],
            sparse_structure_sampler_params={
                "steps": int(ss_sampling_steps),
                "cfg_strength": float(ss_guidance_strength),
            },
            slat_sampler_params={
                "steps": int(slat_sampling_steps),
                "cfg_strength": float(slat_guidance_strength),
            },
        )
        print("[text_to_3d - DEBUG MODE] Pipeline run completed.")

        # --- Create Serializable State Dictionary ---
        state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])

    except Exception as e:
        print(f"❌ [text_to_3d - DEBUG MODE] Error during generation or packing: {e}", file=sys.stderr)
        traceback.print_exc()
        # Raise a Gradio error to send failure message back to client if possible
        raise gr.Error(f"Core generation failed: {e}")

    # --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
    video_path = None
    print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
    # --- Original Video Code Block (Keep commented) ---
    # ... (video code commented out) ...

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[text_to_3d - DEBUG MODE] Cleared CUDA cache.")

    # --- Return Serializable Dictionary and None Video Path ---
    print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
    if state_dict is None:
         # This case should ideally be caught by the exception handling above
         print("Error: state_dict is None before return, generation likely failed.", file=sys.stderr)
         raise gr.Error("State dictionary creation failed.")
    return state_dict, video_path


@spaces.GPU(duration=120)
def extract_glb(
    state_dict: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extracts a GLB file from the provided 3D model state dictionary.
    """
    print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
    user_dir = None # Initialize
    glb_path = None # Initialize
    try:
        session_hash = req.session_hash
        if not session_hash:
            session_hash = f"no_session_{np.random.randint(10000, 99999)}"
            print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")

        if not isinstance(state_dict, dict):
            print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
            raise gr.Error("Invalid state data received. Please generate the model first.")

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        os.makedirs(user_dir, exist_ok=True)
        print(f"[extract_glb] User directory: {user_dir}")

        # --- Unpack state from the dictionary ---
        gs, mesh = unpack_state(state_dict)

        # --- Postprocessing and Export ---
        print("[extract_glb] Converting to GLB...")
        simplify_factor = float(mesh_simplify)
        tex_size = int(texture_size)
        glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
        glb_path = os.path.join(user_dir, 'sample.glb')
        print(f"[extract_glb] Exporting GLB to: {glb_path}")
        glb.export(glb_path)
        print("[extract_glb] GLB exported successfully.")

    except Exception as e:
        print(f"❌ [extract_glb] Error during GLB extraction: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract GLB: {e}") # Propagate error

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_glb] Cleared CUDA cache.")

    print("[extract_glb] Returning GLB path.")
    if glb_path is None:
         print("Error: glb_path is None before return, extraction likely failed.", file=sys.stderr)
         raise gr.Error("GLB path generation failed.")
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(
    state_dict: dict,
    req: gr.Request
) -> Tuple[str, str]:
    """
    Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
    """
    print("[extract_gaussian] Received request.")
    user_dir = None # Initialize
    gaussian_path = None # Initialize
    try:
        session_hash = req.session_hash
        if not session_hash:
            session_hash = f"no_session_{np.random.randint(10000, 99999)}"
            print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")

        if not isinstance(state_dict, dict):
            print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
            raise gr.Error("Invalid state data received. Please generate the model first.")

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        os.makedirs(user_dir, exist_ok=True)
        print(f"[extract_gaussian] User directory: {user_dir}")

        # --- Unpack state from the dictionary ---
        gs, _ = unpack_state(state_dict)

        # --- Export PLY ---
        gaussian_path = os.path.join(user_dir, 'sample.ply')
        print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
        gs.save_ply(gaussian_path)
        print("[extract_gaussian] PLY saved successfully.")

    except Exception as e:
        print(f"❌ [extract_gaussian] Error during Gaussian extraction: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract Gaussian PLY: {e}") # Propagate error

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_gaussian] Cleared CUDA cache.")

    print("[extract_gaussian] Returning PLY path.")
    if gaussian_path is None:
         print("Error: gaussian_path is None before return, extraction likely failed.", file=sys.stderr)
         raise gr.Error("Gaussian PLY path generation failed.")
    return gaussian_path, gaussian_path


# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
    gr.Markdown("""
    # Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset preview.
    * Adjust extraction settings if desired.
    * Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
    *(Note: Video preview is temporarily disabled for debugging)*
    """)

    # --- State Buffer ---
    output_buf = gr.State()

    with gr.Row():
        with gr.Column(scale=1): # Input column
            text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate 3D Preview", variant="primary")

            with gr.Accordion(label="GLB Extraction Settings", open=True):
                mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
                texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")

            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
                        """)

        with gr.Column(scale=1): # Output column
            # Video component remains for layout but won't show anything in this debug version
            video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
            model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0])

            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)

    # --- Event Handlers ---
    print("Defining Gradio event handlers...")

    # Handle session start/end
    # demo.load() is valid with inputs=None, outputs=None (though default)
    demo.load(start_session, inputs=None, outputs=None)
    # >>> FIX: demo.unload() does NOT take inputs/outputs arguments <<<
    demo.unload(end_session) # Removed inputs/outputs kwargs

    # --- Generate Button Click Flow ---
    generate_event = generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
        api_name="get_seed"
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output], # state_dict -> output_buf, None -> video_output
        api_name="text_to_3d"
    ).then(
        lambda: (
            gr.Button(interactive=True),
            gr.Button(interactive=True),
            gr.DownloadButton(interactive=False),
            gr.DownloadButton(interactive=False)
        ),
        inputs=None,
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
    )

    # --- Extract GLB Button Click Flow ---
    extract_glb_event = extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
        api_name="extract_glb"
    ).then(
        lambda: gr.DownloadButton(interactive=True),
        inputs=None,
        outputs=[download_glb],
    )

    # --- Extract Gaussian Button Click Flow ---
    extract_gs_event = extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
        api_name="extract_gaussian"
    ).then(
        lambda: gr.DownloadButton(interactive=True),
        inputs=None,
        outputs=[download_gs],
    )

    # --- Clear Download Button Interactivity when model preview is cleared ---
    model_output.clear(
        lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
        inputs=None,
        outputs=[download_glb, download_gs]
    )
    video_output.clear(
         lambda: (
            gr.Button(interactive=False),
            gr.Button(interactive=False),
            gr.DownloadButton(interactive=False),
            gr.DownloadButton(interactive=False)
        ),
        inputs=None,
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
    )

    print("Gradio interface setup complete.")


# --- Launch the Gradio app ---
if __name__ == "__main__":
    print("Loading Trellis pipeline...")
    pipeline_loaded = False
    pipeline = None # Initialize
    try:
        pipeline = TrellisTextTo3DPipeline.from_pretrained(
            "JeffreyXiang/TRELLIS-text-xlarge",
            torch_dtype=torch.float16 # Use float16 if GPU supports it
        )
        if torch.cuda.is_available():
            pipeline = pipeline.to("cuda")
            print("✅ Trellis pipeline loaded successfully to GPU.")
        else:
            print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
            print("✅ Trellis pipeline loaded successfully to CPU.")
        pipeline_loaded = True
    except Exception as e:
        print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
        traceback.print_exc()
        print("❌ Exiting due to pipeline load failure.")
        sys.exit(1)

    if pipeline_loaded:
        print("Launching Gradio demo...")
        # Consider increasing queue timeout if tasks are long
        demo.queue(
             # default_concurrency_limit=2, # Limit concurrency if resource issues suspected
             # status_update_rate='auto'
        ).launch(
            # server_name="0.0.0.0", # Allows access from local network
            # share=False, # Set True for public link (careful with resources)
            debug=True, # Enable Gradio/FastAPI debug logs
            # prevent_thread_lock=True # Might help sometimes
        )
        print("Gradio demo launched.")
    else:
         print("Gradio demo not launched due to pipeline loading failure.")