File size: 24,470 Bytes
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988efc8
 
 
 
 
 
 
 
 
 
1809fe4
988efc8
63ce34f
1809fe4
 
988efc8
1809fe4
 
 
 
 
 
 
 
3447081
 
63ce34f
1809fe4
 
63ce34f
1809fe4
63ce34f
 
 
 
 
 
 
 
 
 
1809fe4
63ce34f
1809fe4
63ce34f
1809fe4
63ce34f
1809fe4
988efc8
63ce34f
 
 
 
1809fe4
63ce34f
1809fe4
63ce34f
 
1809fe4
 
 
63ce34f
 
 
 
 
 
1809fe4
 
 
 
63ce34f
 
 
 
 
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ce34f
 
 
 
1809fe4
 
 
 
 
 
63ce34f
988efc8
3447081
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3447081
1809fe4
 
 
3447081
1809fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Version: 1.1.2 - API State Fix + DEBUG (Video Disabled) + Import Fix (2025-05-04)
# Changes:
# - ENSURED `import spaces` is present for the @spaces.GPU decorator.
# - TEMPORARY DEBUGGING STEP: Commented out video rendering in `text_to_3d`
#   and return None for video_path to isolate the "Session not found" error.
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
#   as the first return value. This ensures the dictionary is available via the API.
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument
#   instead of relying on the implicit `gr.State` object type when called via API.
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
#   so the UI continues to function by passing the dictionary through output_buf.
# - Added minor safety checks and logging.

import gradio as gr
import spaces  # <<<--- ENSURE THIS IMPORT IS PRESENT

import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
# Fix potential SpConv issue if needed, try 'hash' or 'native'
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original

from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils

import traceback
import sys


MAX_SEED = np.iinfo(np.int32).max
# Ensure TMP_DIR is correctly defined relative to the script location
# Using /tmp/ directly might be more robust in some container environments
# TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
TMP_DIR = '/tmp/gradio_sessions' # Use standard /tmp directory
print(f"Using temporary directory: {TMP_DIR}")
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    """Creates a temporary directory for the user session."""
    try:
        session_hash = req.session_hash
        if not session_hash:
             # Fallback or generate a temporary ID if session_hash is missing (might happen on first load?)
             session_hash = f"no_session_{np.random.randint(10000, 99999)}"
             print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        os.makedirs(user_dir, exist_ok=True)
        print(f"Started session, created directory: {user_dir}")
    except Exception as e:
        print(f"Error in start_session: {e}", file=sys.stderr)
        # Decide if this is critical - maybe raise to prevent further issues?


def end_session(req: gr.Request):
    """Removes the temporary directory for the user session."""
    try:
        session_hash = req.session_hash
        if not session_hash:
            print("Warning: No session_hash in end_session request, cannot clean up.")
            return

        user_dir = os.path.join(TMP_DIR, str(session_hash))
        if os.path.exists(user_dir):
            try:
                shutil.rmtree(user_dir)
                print(f"Ended session, removed directory: {user_dir}")
            except OSError as e:
                print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
        else:
            print(f"Ended session, directory already removed or hash mismatch: {user_dir}")
    except Exception as e:
        print(f"Error in end_session: {e}", file=sys.stderr)


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    """Packs Gaussian and Mesh data into a serializable dictionary."""
    print("[pack_state] Packing state to dictionary...")
    try:
        packed_data = {
            'gaussian': {
                **{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included
                '_xyz': gs._xyz.detach().cpu().numpy(),
                '_features_dc': gs._features_dc.detach().cpu().numpy(),
                '_scaling': gs._scaling.detach().cpu().numpy(),
                '_rotation': gs._rotation.detach().cpu().numpy(),
                '_opacity': gs._opacity.detach().cpu().numpy(),
            },
            'mesh': {
                'vertices': mesh.vertices.detach().cpu().numpy(),
                'faces': mesh.faces.detach().cpu().numpy(),
            },
        }
        print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
        return packed_data
    except Exception as e:
        print(f"Error during pack_state: {e}", file=sys.stderr)
        traceback.print_exc()
        raise  # Re-raise the error to be caught upstream


def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
    """Unpacks Gaussian and Mesh data from a dictionary."""
    print("[unpack_state] Unpacking state from dictionary...")
    try:
        if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
            raise ValueError("Invalid state_dict structure passed to unpack_state.")

        # Ensure the device is correctly set when unpacking
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"[unpack_state] Using device: {device}")

        gauss_data = state_dict['gaussian']
        mesh_data = state_dict['mesh']

        # Recreate Gaussian object using parameters stored during packing
        gs = Gaussian(
            aabb=gauss_data.get('aabb'), # Use .get for safety
            sh_degree=gauss_data.get('sh_degree'),
            mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
            scaling_bias=gauss_data.get('scaling_bias'),
            opacity_bias=gauss_data.get('opacity_bias'),
            scaling_activation=gauss_data.get('scaling_activation'),
        )
        # Load tensors, ensuring they are created on the correct device
        gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
        gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
        gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
        gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
        gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
        print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")

        # Recreate mesh object using edict for compatibility if needed elsewhere
        mesh = edict(
            vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
            faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64
        )
        print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")

        return gs, mesh
    except Exception as e:
        print(f"Error during unpack_state: {e}", file=sys.stderr)
        traceback.print_exc()
        raise # Re-raise the error


def get_seed(randomize_seed: bool, seed: int) -> int:
    """Gets a seed value, randomizing if requested."""
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
    return int(new_seed) # Ensure it's a standard int


@spaces.GPU
def text_to_3d(
    prompt: str,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, Optional[str]]: # Return type changed Optional[str] for video path
    """
    Generates a 3D model (Gaussian and Mesh) from text and returns a
    serializable state dictionary and potentially a video preview path.
    >>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
    """
    print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
    session_hash = req.session_hash
    if not session_hash:
        session_hash = f"no_session_{np.random.randint(10000, 99999)}" # Use consistent fallback
        print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
    user_dir = os.path.join(TMP_DIR, str(session_hash))
    os.makedirs(user_dir, exist_ok=True) # Ensure it exists for this request
    print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")

    # --- Generation Pipeline ---
    try:
        print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
        # Add more specific pipeline settings if needed based on Trellis docs
        outputs = pipeline.run(
            prompt=prompt,
            seed=seed,
            formats=["gaussian", "mesh"], # Ensure both are generated
            sparse_structure_sampler_params={
                "steps": int(ss_sampling_steps), # Ensure steps are int
                "cfg_strength": float(ss_guidance_strength),
            },
            slat_sampler_params={
                "steps": int(slat_sampling_steps), # Ensure steps are int
                "cfg_strength": float(slat_guidance_strength),
            },
            # device='cuda' # Explicitly specify device if needed
        )
        print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
    except Exception as e:
        print(f"❌ [text_to_3d - DEBUG MODE] Pipeline error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Trellis pipeline failed during generation: {e}") # More specific error

    # --- Create Serializable State Dictionary ---
    try:
        state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    except Exception as e:
        print(f"❌ [text_to_3d - DEBUG MODE] pack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to pack state after generation: {e}")

    # --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
    video_path = None # Explicitly set path to None for this debug version
    print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
    # --- Original Video Code Block Start (Keep commented for now) ---
    # try:
    #     print("[text_to_3d] Rendering video preview...")
    #     video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    #     video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    #     # Ensure video frames are uint8
    #     video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
    #     video_path_tmp = os.path.join(user_dir, 'sample.mp4') # Use temp name
    #     imageio.mimsave(video_path_tmp, video, fps=15, quality=8) # Added quality setting
    #     print(f"[text_to_3d] Video saved to: {video_path_tmp}")
    #     video_path = video_path_tmp # Assign if successful
    # except Exception as e:
    #     print(f"❌ [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
    #     traceback.print_exc()
    #     # Still return state_dict, but maybe signal video error? Return None for path.
    #     video_path = None # Indicate video failure
    # --- Original Video Code Block End ---

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[text_to_3d - DEBUG MODE] Cleared CUDA cache.")

    # --- Return Serializable Dictionary and None Video Path ---
    print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
    # Ensure state_dict is not None before returning
    if state_dict is None:
         raise gr.Error("Failed to create state dictionary.")
    return state_dict, video_path


@spaces.GPU(duration=120) # Increased duration slightly
def extract_glb(
    state_dict: dict, # <-- Accepts the dictionary directly
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extracts a GLB file from the provided 3D model state dictionary.
    """
    print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
    session_hash = req.session_hash
    if not session_hash:
        session_hash = f"no_session_{np.random.randint(10000, 99999)}"
        print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")

    if not isinstance(state_dict, dict):
        print("❌ [extract_glb] Error: Invalid state_dict received (not a dictionary).")
        raise gr.Error("Invalid state data received. Please generate the model first.")

    user_dir = os.path.join(TMP_DIR, str(session_hash))
    os.makedirs(user_dir, exist_ok=True) # Ensure it exists
    print(f"[extract_glb] User directory: {user_dir}")

    # --- Unpack state from the dictionary ---
    try:
        gs, mesh = unpack_state(state_dict)
    except Exception as e:
        print(f"❌ [extract_glb] unpack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to unpack state during GLB extraction: {e}")

    # --- Postprocessing and Export ---
    try:
        print("[extract_glb] Converting to GLB...")
        # Ensure parameters have correct types
        simplify_factor = float(mesh_simplify)
        tex_size = int(texture_size)
        glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
        glb_path = os.path.join(user_dir, 'sample.glb')
        print(f"[extract_glb] Exporting GLB to: {glb_path}")
        glb.export(glb_path)
        print("[extract_glb] GLB exported successfully.")
    except Exception as e:
        print(f"❌ [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract GLB: {e}")

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_glb] Cleared CUDA cache.")

    # Return path twice for both Model3D and DownloadButton components
    print("[extract_glb] Returning GLB path.")
    # Ensure path is returned, even if export failed somehow (though error should raise first)
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(
    state_dict: dict, # <-- Accepts the dictionary directly
    req: gr.Request
) -> Tuple[str, str]:
    """
    Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
    """
    print("[extract_gaussian] Received request.")
    session_hash = req.session_hash
    if not session_hash:
        session_hash = f"no_session_{np.random.randint(10000, 99999)}"
        print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")

    if not isinstance(state_dict, dict):
        print("❌ [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
        raise gr.Error("Invalid state data received. Please generate the model first.")

    user_dir = os.path.join(TMP_DIR, str(session_hash))
    os.makedirs(user_dir, exist_ok=True) # Ensure it exists
    print(f"[extract_gaussian] User directory: {user_dir}")

    # --- Unpack state from the dictionary ---
    try:
        gs, _ = unpack_state(state_dict) # Only need Gaussian part
    except Exception as e:
        print(f"❌ [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to unpack state during Gaussian extraction: {e}")

    # --- Export PLY ---
    try:
        gaussian_path = os.path.join(user_dir, 'sample.ply')
        print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
        gs.save_ply(gaussian_path)
        print("[extract_gaussian] PLY saved successfully.")
    except Exception as e:
        print(f"❌ [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
        traceback.print_exc()
        raise gr.Error(f"Failed to extract Gaussian PLY: {e}")

    # --- Cleanup and Return ---
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("[extract_gaussian] Cleared CUDA cache.")

    # Return path twice for both Model3D and DownloadButton components
    print("[extract_gaussian] Returning PLY path.")
    # Ensure path is returned
    return gaussian_path, gaussian_path


# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
# Define the interface layout
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
    gr.Markdown("""
    # Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Type a text prompt and click "Generate" to create a 3D asset preview.
    * Adjust extraction settings if desired.
    * Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
    *(Note: Video preview is temporarily disabled for debugging)*
    """)

    # --- State Buffer ---
    # This hidden component holds the dictionary linking generation and extraction.
    output_buf = gr.State()

    with gr.Row():
        with gr.Column(scale=1): # Input column
            text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
                gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
                    slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)

            generate_btn = gr.Button("Generate 3D Preview", variant="primary")

            with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default
                mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
                texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")

            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
                        """)

        with gr.Column(scale=1): # Output column
            # Video component remains for layout but won't show anything in this debug version
            video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
            model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background

            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)

    # --- Event Handlers ---
    print("Defining Gradio event handlers...")

    # Handle session start/end
    demo.load(start_session, inputs=None, outputs=None)
    demo.unload(end_session, inputs=None, outputs=None)

    # --- Generate Button Click Flow ---
    generate_event = generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
        api_name="get_seed"
    ).then(
        text_to_3d,
        inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        # Output state_dict to buffer, output None to video component
        outputs=[output_buf, video_output],
        api_name="text_to_3d"
    ).then(
        # Function to update button interactivity after generation attempt
        lambda: (
            gr.Button(interactive=True),
            gr.Button(interactive=True),
            gr.DownloadButton(interactive=False),
            gr.DownloadButton(interactive=False)
        ),
        inputs=None, # No inputs needed for the lambda
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
    )

    # --- Extract GLB Button Click Flow ---
    extract_glb_event = extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
        api_name="extract_glb"
    ).then(
        lambda: gr.DownloadButton(interactive=True),
        inputs=None,
        outputs=[download_glb],
    )

    # --- Extract Gaussian Button Click Flow ---
    extract_gs_event = extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
        api_name="extract_gaussian"
    ).then(
        lambda: gr.DownloadButton(interactive=True),
        inputs=None,
        outputs=[download_gs],
    )

    # --- Clear Download Button Interactivity when model preview is cleared ---
    model_output.clear(
        lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
        inputs=None,
        outputs=[download_glb, download_gs]
    )
    # Also disable buttons if the (currently disabled) video output is cleared
    video_output.clear(
         lambda: (
            gr.Button(interactive=False),
            gr.Button(interactive=False),
            gr.DownloadButton(interactive=False),
            gr.DownloadButton(interactive=False)
        ),
        inputs=None,
        outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
    )

    print("Gradio interface setup complete.")


# --- Launch the Gradio app ---
# Main execution block
if __name__ == "__main__":
    print("Loading Trellis pipeline...")
    pipeline_loaded = False
    try:
        # Ensure model/variant matches requirements, use revision if needed
        pipeline = TrellisTextTo3DPipeline.from_pretrained(
            "JeffreyXiang/TRELLIS-text-xlarge",
            # revision="main", # Specify if needed
            torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
        )
        # Move to GPU if available
        if torch.cuda.is_available():
            pipeline = pipeline.to("cuda")
            print("βœ… Trellis pipeline loaded successfully to GPU.")
        else:
            print("⚠️ WARNING: CUDA not available, running on CPU (will be very slow).")
            print("βœ… Trellis pipeline loaded successfully to CPU.")
        pipeline_loaded = True
    except Exception as e:
        print(f"❌ Failed to load Trellis pipeline: {e}", file=sys.stderr)
        traceback.print_exc()
        # Exit if pipeline is critical for the app to run
        print("❌ Exiting due to pipeline load failure.")
        sys.exit(1) # Exit if pipeline fails

    if pipeline_loaded:
        print("Launching Gradio demo...")
        # Set share=True if you need a public link (e.g., for testing from outside local network)
        # Set server_name="0.0.0.0" to allow access from local network IP
        # Increased concurrency_limit and timeout for queue might help
        demo.queue(
             # default_concurrency_limit=5, # Adjust based on expected load and space resources
             # api_open=True # Keep API accessible
        ).launch(
            # server_name="0.0.0.0", # Make accessible on local network
            # share=False, # Set to True for public link if needed
            debug=True, # Enable Gradio debug mode for more detailed logs
            # prevent_thread_lock=True # May help with async issues in some cases
        )
        print("Gradio demo launched.")
    else:
         print("Gradio demo not launched due to pipeline loading failure.")