Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,470 Bytes
1809fe4 988efc8 1809fe4 988efc8 63ce34f 1809fe4 988efc8 1809fe4 3447081 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 988efc8 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 1809fe4 63ce34f 988efc8 3447081 1809fe4 3447081 1809fe4 3447081 1809fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
# Version: 1.1.2 - API State Fix + DEBUG (Video Disabled) + Import Fix (2025-05-04)
# Changes:
# - ENSURED `import spaces` is present for the @spaces.GPU decorator.
# - TEMPORARY DEBUGGING STEP: Commented out video rendering in `text_to_3d`
# and return None for video_path to isolate the "Session not found" error.
# - Modified `text_to_3d` to explicitly return the serializable `state_dict` from `pack_state`
# as the first return value. This ensures the dictionary is available via the API.
# - Modified `extract_glb` and `extract_gaussian` to accept `state_dict: dict` as their first argument
# instead of relying on the implicit `gr.State` object type when called via API.
# - Kept Gradio UI bindings (`outputs=[output_buf, ...]`, `inputs=[output_buf, ...]`)
# so the UI continues to function by passing the dictionary through output_buf.
# - Added minor safety checks and logging.
import gradio as gr
import spaces # <<<--- ENSURE THIS IMPORT IS PRESENT
import os
import shutil
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
# Fix potential SpConv issue if needed, try 'hash' or 'native'
# os.environ.setdefault('SPCONV_ALGO', 'native') # Use setdefault to avoid overwriting if already set
os.environ['SPCONV_ALGO'] = 'native' # Direct set as per original
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisTextTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import traceback
import sys
MAX_SEED = np.iinfo(np.int32).max
# Ensure TMP_DIR is correctly defined relative to the script location
# Using /tmp/ directly might be more robust in some container environments
# TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
TMP_DIR = '/tmp/gradio_sessions' # Use standard /tmp directory
print(f"Using temporary directory: {TMP_DIR}")
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
"""Creates a temporary directory for the user session."""
try:
session_hash = req.session_hash
if not session_hash:
# Fallback or generate a temporary ID if session_hash is missing (might happen on first load?)
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True)
print(f"Started session, created directory: {user_dir}")
except Exception as e:
print(f"Error in start_session: {e}", file=sys.stderr)
# Decide if this is critical - maybe raise to prevent further issues?
def end_session(req: gr.Request):
"""Removes the temporary directory for the user session."""
try:
session_hash = req.session_hash
if not session_hash:
print("Warning: No session_hash in end_session request, cannot clean up.")
return
user_dir = os.path.join(TMP_DIR, str(session_hash))
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
print(f"Ended session, removed directory: {user_dir}")
except OSError as e:
print(f"Error removing tmp directory {user_dir}: {e.strerror}", file=sys.stderr)
else:
print(f"Ended session, directory already removed or hash mismatch: {user_dir}")
except Exception as e:
print(f"Error in end_session: {e}", file=sys.stderr)
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
"""Packs Gaussian and Mesh data into a serializable dictionary."""
print("[pack_state] Packing state to dictionary...")
try:
packed_data = {
'gaussian': {
**{k: v for k, v in gs.init_params.items()}, # Ensure init_params are included
'_xyz': gs._xyz.detach().cpu().numpy(),
'_features_dc': gs._features_dc.detach().cpu().numpy(),
'_scaling': gs._scaling.detach().cpu().numpy(),
'_rotation': gs._rotation.detach().cpu().numpy(),
'_opacity': gs._opacity.detach().cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.detach().cpu().numpy(),
'faces': mesh.faces.detach().cpu().numpy(),
},
}
print(f"[pack_state] Dictionary created. Keys: {list(packed_data.keys())}, Gaussian points: {len(packed_data['gaussian']['_xyz'])}, Mesh vertices: {len(packed_data['mesh']['vertices'])}")
return packed_data
except Exception as e:
print(f"Error during pack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise # Re-raise the error to be caught upstream
def unpack_state(state_dict: dict) -> Tuple[Gaussian, edict]:
"""Unpacks Gaussian and Mesh data from a dictionary."""
print("[unpack_state] Unpacking state from dictionary...")
try:
if not isinstance(state_dict, dict) or 'gaussian' not in state_dict or 'mesh' not in state_dict:
raise ValueError("Invalid state_dict structure passed to unpack_state.")
# Ensure the device is correctly set when unpacking
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"[unpack_state] Using device: {device}")
gauss_data = state_dict['gaussian']
mesh_data = state_dict['mesh']
# Recreate Gaussian object using parameters stored during packing
gs = Gaussian(
aabb=gauss_data.get('aabb'), # Use .get for safety
sh_degree=gauss_data.get('sh_degree'),
mininum_kernel_size=gauss_data.get('mininum_kernel_size'),
scaling_bias=gauss_data.get('scaling_bias'),
opacity_bias=gauss_data.get('opacity_bias'),
scaling_activation=gauss_data.get('scaling_activation'),
)
# Load tensors, ensuring they are created on the correct device
gs._xyz = torch.tensor(gauss_data['_xyz'], device=device, dtype=torch.float32)
gs._features_dc = torch.tensor(gauss_data['_features_dc'], device=device, dtype=torch.float32)
gs._scaling = torch.tensor(gauss_data['_scaling'], device=device, dtype=torch.float32)
gs._rotation = torch.tensor(gauss_data['_rotation'], device=device, dtype=torch.float32)
gs._opacity = torch.tensor(gauss_data['_opacity'], device=device, dtype=torch.float32)
print(f"[unpack_state] Gaussian unpacked. Points: {gs.get_xyz.shape[0]}")
# Recreate mesh object using edict for compatibility if needed elsewhere
mesh = edict(
vertices=torch.tensor(mesh_data['vertices'], device=device, dtype=torch.float32),
faces=torch.tensor(mesh_data['faces'], device=device, dtype=torch.int64), # Faces are typically long/int64
)
print(f"[unpack_state] Mesh unpacked. Vertices: {mesh.vertices.shape[0]}, Faces: {mesh.faces.shape[0]}")
return gs, mesh
except Exception as e:
print(f"Error during unpack_state: {e}", file=sys.stderr)
traceback.print_exc()
raise # Re-raise the error
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Gets a seed value, randomizing if requested."""
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
print(f"[get_seed] Randomize: {randomize_seed}, Input Seed: {seed}, Output Seed: {new_seed}")
return int(new_seed) # Ensure it's a standard int
@spaces.GPU
def text_to_3d(
prompt: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, Optional[str]]: # Return type changed Optional[str] for video path
"""
Generates a 3D model (Gaussian and Mesh) from text and returns a
serializable state dictionary and potentially a video preview path.
>>> TEMPORARILY DISABLED VIDEO RENDERING FOR DEBUGGING <<<
"""
print(f"[text_to_3d - DEBUG MODE] Received prompt: '{prompt}', Seed: {seed}")
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}" # Use consistent fallback
print(f"Warning: No session_hash in text_to_3d request, using temporary ID: {session_hash}")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True) # Ensure it exists for this request
print(f"[text_to_3d - DEBUG MODE] User directory: {user_dir}")
# --- Generation Pipeline ---
try:
print("[text_to_3d - DEBUG MODE] Running Trellis pipeline...")
# Add more specific pipeline settings if needed based on Trellis docs
outputs = pipeline.run(
prompt=prompt,
seed=seed,
formats=["gaussian", "mesh"], # Ensure both are generated
sparse_structure_sampler_params={
"steps": int(ss_sampling_steps), # Ensure steps are int
"cfg_strength": float(ss_guidance_strength),
},
slat_sampler_params={
"steps": int(slat_sampling_steps), # Ensure steps are int
"cfg_strength": float(slat_guidance_strength),
},
# device='cuda' # Explicitly specify device if needed
)
print("[text_to_3d - DEBUG MODE] Pipeline run completed.")
except Exception as e:
print(f"β [text_to_3d - DEBUG MODE] Pipeline error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Trellis pipeline failed during generation: {e}") # More specific error
# --- Create Serializable State Dictionary ---
try:
state_dict = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
except Exception as e:
print(f"β [text_to_3d - DEBUG MODE] pack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to pack state after generation: {e}")
# --- Render Video Preview (TEMPORARILY DISABLED FOR DEBUGGING) ---
video_path = None # Explicitly set path to None for this debug version
print("[text_to_3d - DEBUG MODE] Skipping video rendering.")
# --- Original Video Code Block Start (Keep commented for now) ---
# try:
# print("[text_to_3d] Rendering video preview...")
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
# # Ensure video frames are uint8
# video = [np.concatenate([v.astype(np.uint8), vg.astype(np.uint8)], axis=1) for v, vg in zip(video, video_geo)]
# video_path_tmp = os.path.join(user_dir, 'sample.mp4') # Use temp name
# imageio.mimsave(video_path_tmp, video, fps=15, quality=8) # Added quality setting
# print(f"[text_to_3d] Video saved to: {video_path_tmp}")
# video_path = video_path_tmp # Assign if successful
# except Exception as e:
# print(f"β [text_to_3d] Video rendering/saving error: {e}", file=sys.stderr)
# traceback.print_exc()
# # Still return state_dict, but maybe signal video error? Return None for path.
# video_path = None # Indicate video failure
# --- Original Video Code Block End ---
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[text_to_3d - DEBUG MODE] Cleared CUDA cache.")
# --- Return Serializable Dictionary and None Video Path ---
print("[text_to_3d - DEBUG MODE] Returning state dictionary and None video path.")
# Ensure state_dict is not None before returning
if state_dict is None:
raise gr.Error("Failed to create state dictionary.")
return state_dict, video_path
@spaces.GPU(duration=120) # Increased duration slightly
def extract_glb(
state_dict: dict, # <-- Accepts the dictionary directly
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extracts a GLB file from the provided 3D model state dictionary.
"""
print(f"[extract_glb] Received request. Simplify: {mesh_simplify}, Texture Size: {texture_size}")
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_glb request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("β [extract_glb] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True) # Ensure it exists
print(f"[extract_glb] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
try:
gs, mesh = unpack_state(state_dict)
except Exception as e:
print(f"β [extract_glb] unpack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to unpack state during GLB extraction: {e}")
# --- Postprocessing and Export ---
try:
print("[extract_glb] Converting to GLB...")
# Ensure parameters have correct types
simplify_factor = float(mesh_simplify)
tex_size = int(texture_size)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=simplify_factor, texture_size=tex_size, verbose=True)
glb_path = os.path.join(user_dir, 'sample.glb')
print(f"[extract_glb] Exporting GLB to: {glb_path}")
glb.export(glb_path)
print("[extract_glb] GLB exported successfully.")
except Exception as e:
print(f"β [extract_glb] GLB conversion/export error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract GLB: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_glb] Cleared CUDA cache.")
# Return path twice for both Model3D and DownloadButton components
print("[extract_glb] Returning GLB path.")
# Ensure path is returned, even if export failed somehow (though error should raise first)
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(
state_dict: dict, # <-- Accepts the dictionary directly
req: gr.Request
) -> Tuple[str, str]:
"""
Extracts a PLY (Gaussian) file from the provided 3D model state dictionary.
"""
print("[extract_gaussian] Received request.")
session_hash = req.session_hash
if not session_hash:
session_hash = f"no_session_{np.random.randint(10000, 99999)}"
print(f"Warning: No session_hash in extract_gaussian request, using temporary ID: {session_hash}")
if not isinstance(state_dict, dict):
print("β [extract_gaussian] Error: Invalid state_dict received (not a dictionary).")
raise gr.Error("Invalid state data received. Please generate the model first.")
user_dir = os.path.join(TMP_DIR, str(session_hash))
os.makedirs(user_dir, exist_ok=True) # Ensure it exists
print(f"[extract_gaussian] User directory: {user_dir}")
# --- Unpack state from the dictionary ---
try:
gs, _ = unpack_state(state_dict) # Only need Gaussian part
except Exception as e:
print(f"β [extract_gaussian] unpack_state error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to unpack state during Gaussian extraction: {e}")
# --- Export PLY ---
try:
gaussian_path = os.path.join(user_dir, 'sample.ply')
print(f"[extract_gaussian] Saving PLY to: {gaussian_path}")
gs.save_ply(gaussian_path)
print("[extract_gaussian] PLY saved successfully.")
except Exception as e:
print(f"β [extract_gaussian] PLY saving error: {e}", file=sys.stderr)
traceback.print_exc()
raise gr.Error(f"Failed to extract Gaussian PLY: {e}")
# --- Cleanup and Return ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[extract_gaussian] Cleared CUDA cache.")
# Return path twice for both Model3D and DownloadButton components
print("[extract_gaussian] Returning PLY path.")
# Ensure path is returned
return gaussian_path, gaussian_path
# --- Gradio UI Definition ---
print("Setting up Gradio Blocks interface...")
# Define the interface layout
with gr.Blocks(delete_cache=(600, 600), title="TRELLIS Text-to-3D") as demo:
gr.Markdown("""
# Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Type a text prompt and click "Generate" to create a 3D asset preview.
* Adjust extraction settings if desired.
* Click "Extract GLB" or "Extract Gaussian" to get the downloadable 3D file.
*(Note: Video preview is temporarily disabled for debugging)*
""")
# --- State Buffer ---
# This hidden component holds the dictionary linking generation and extraction.
output_buf = gr.State()
with gr.Row():
with gr.Column(scale=1): # Input column
text_prompt = gr.Textbox(label="Text Prompt", lines=5, placeholder="e.g., a cute red dragon")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("--- \n **Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
gr.Markdown("--- \n **Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 15.0, label="Guidance Strength", value=7.5, step=0.1)
slat_sampling_steps = gr.Slider(10, 50, label="Sampling Steps", value=25, step=1)
generate_btn = gr.Button("Generate 3D Preview", variant="primary")
with gr.Accordion(label="GLB Extraction Settings", open=True): # Open by default
mesh_simplify = gr.Slider(0.9, 0.99, label="Simplify Factor", value=0.95, step=0.01, info="Higher value = less simplification (more polys)")
texture_size = gr.Slider(512, 2048, label="Texture Size (pixels)", value=1024, step=512, info="Size of the generated texture map")
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian (PLY)", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file (.ply) can be very large (~50MB+) and may take time to process/download.*
""")
with gr.Column(scale=1): # Output column
# Video component remains for layout but won't show anything in this debug version
video_output = gr.Video(label="Generated 3D Preview (DISABLED FOR DEBUG)", autoplay=False, loop=False, value=None, height=350)
model_output = gr.Model3D(label="Extracted Model Preview", height=350, clear_color=[0.95, 0.95, 0.95, 1.0]) # Light background
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian (PLY)", interactive=False)
# --- Event Handlers ---
print("Defining Gradio event handlers...")
# Handle session start/end
demo.load(start_session, inputs=None, outputs=None)
demo.unload(end_session, inputs=None, outputs=None)
# --- Generate Button Click Flow ---
generate_event = generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
api_name="get_seed"
).then(
text_to_3d,
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
# Output state_dict to buffer, output None to video component
outputs=[output_buf, video_output],
api_name="text_to_3d"
).then(
# Function to update button interactivity after generation attempt
lambda: (
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.DownloadButton(interactive=False),
gr.DownloadButton(interactive=False)
),
inputs=None, # No inputs needed for the lambda
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
# --- Extract GLB Button Click Flow ---
extract_glb_event = extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
api_name="extract_glb"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_glb],
)
# --- Extract Gaussian Button Click Flow ---
extract_gs_event = extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
api_name="extract_gaussian"
).then(
lambda: gr.DownloadButton(interactive=True),
inputs=None,
outputs=[download_gs],
)
# --- Clear Download Button Interactivity when model preview is cleared ---
model_output.clear(
lambda: (gr.DownloadButton(interactive=False), gr.DownloadButton(interactive=False)),
inputs=None,
outputs=[download_glb, download_gs]
)
# Also disable buttons if the (currently disabled) video output is cleared
video_output.clear(
lambda: (
gr.Button(interactive=False),
gr.Button(interactive=False),
gr.DownloadButton(interactive=False),
gr.DownloadButton(interactive=False)
),
inputs=None,
outputs=[extract_glb_btn, extract_gs_btn, download_glb, download_gs],
)
print("Gradio interface setup complete.")
# --- Launch the Gradio app ---
# Main execution block
if __name__ == "__main__":
print("Loading Trellis pipeline...")
pipeline_loaded = False
try:
# Ensure model/variant matches requirements, use revision if needed
pipeline = TrellisTextTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-text-xlarge",
# revision="main", # Specify if needed
torch_dtype=torch.float16 # Use float16 if GPU supports it for less memory
)
# Move to GPU if available
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
print("β
Trellis pipeline loaded successfully to GPU.")
else:
print("β οΈ WARNING: CUDA not available, running on CPU (will be very slow).")
print("β
Trellis pipeline loaded successfully to CPU.")
pipeline_loaded = True
except Exception as e:
print(f"β Failed to load Trellis pipeline: {e}", file=sys.stderr)
traceback.print_exc()
# Exit if pipeline is critical for the app to run
print("β Exiting due to pipeline load failure.")
sys.exit(1) # Exit if pipeline fails
if pipeline_loaded:
print("Launching Gradio demo...")
# Set share=True if you need a public link (e.g., for testing from outside local network)
# Set server_name="0.0.0.0" to allow access from local network IP
# Increased concurrency_limit and timeout for queue might help
demo.queue(
# default_concurrency_limit=5, # Adjust based on expected load and space resources
# api_open=True # Keep API accessible
).launch(
# server_name="0.0.0.0", # Make accessible on local network
# share=False, # Set to True for public link if needed
debug=True, # Enable Gradio debug mode for more detailed logs
# prevent_thread_lock=True # May help with async issues in some cases
)
print("Gradio demo launched.")
else:
print("Gradio demo not launched due to pipeline loading failure.") |