|
import os |
|
import json |
|
import subprocess |
|
from threading import Thread |
|
|
|
import torch |
|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer |
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
MODEL_ID = os.environ.get("MODEL_ID") |
|
CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE") |
|
MODEL_NAME = MODEL_ID.split("/")[-1] |
|
CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH")) |
|
COLOR = os.environ.get("COLOR") |
|
EMOJI = os.environ.get("EMOJI") |
|
DESCRIPTION = os.environ.get("DESCRIPTION") |
|
|
|
|
|
@spaces.GPU() |
|
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): |
|
|
|
if CHAT_TEMPLATE == "ChatML": |
|
stop_tokens = ["<|endoftext|>", "<|im_end|>"] |
|
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' |
|
for human, assistant in history: |
|
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant |
|
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' |
|
elif CHAT_TEMPLATE == "Mistral Instruct": |
|
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] |
|
instruction = '<s>[INST] ' + system_prompt |
|
for human, assistant in history: |
|
instruction += human + ' [/INST] ' + assistant + '</s>[INST]' |
|
instruction += ' ' + message + ' [/INST]' |
|
elif CHAT_TEMPLATE == "Bielik": |
|
stop_tokens = ["</s>"] |
|
prompt_builder = ["<s>"] |
|
for human, assistant in history: |
|
if system_prompt: |
|
prompt_builder.append(f"[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{human} [/INST] {assistant}</s>") |
|
system_prompt = None |
|
else: |
|
prompt_builder.append(f"[INST] {human} [/INST] {assistant}</s>") |
|
prompt_builder.append(f"[INST] {message} [/INST]") |
|
instruction = ''.join(prompt_builder) |
|
else: |
|
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'") |
|
print(instruction) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True) |
|
input_ids, attention_mask = enc.input_ids, enc.attention_mask |
|
|
|
if input_ids.shape[1] > CONTEXT_LENGTH: |
|
input_ids = input_ids[:, -CONTEXT_LENGTH:] |
|
|
|
generate_kwargs = dict( |
|
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)}, |
|
streamer=streamer, |
|
do_sample=True, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
top_p=top_p |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
outputs = [] |
|
for new_token in streamer: |
|
outputs.append(new_token) |
|
if new_token in stop_tokens: |
|
break |
|
yield "".join(outputs) |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
attn_implementation="flash_attention_2", |
|
) |
|
|
|
|
|
gr.ChatInterface( |
|
predict, |
|
title=EMOJI + " " + MODEL_NAME, |
|
description=DESCRIPTION, |
|
examples=[ |
|
["Kim jesteś?"], |
|
["Ile to jest 9+2-1?"], |
|
["Napisz mi coś miłego."] |
|
], |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), |
|
additional_inputs=[ |
|
gr.Textbox("Jesteś pomocnym asystentem o imieniu Bielik.", label="System prompt"), |
|
gr.Slider(0, 1, 0.6, label="Temperature"), |
|
gr.Slider(128, 4096, 1024, label="Max new tokens"), |
|
gr.Slider(1, 80, 40, label="Top K sampling"), |
|
gr.Slider(0, 2, 1.1, label="Repetition penalty"), |
|
gr.Slider(0, 1, 0.95, label="Top P sampling"), |
|
], |
|
theme=gr.themes.Soft(primary_hue=COLOR), |
|
).queue().launch() |