File size: 679 Bytes
beb040a
 
 
 
 
28329d2
 
 
 
 
 
 
 
 
 
c973c9e
28329d2
 
 
 
 
 
 
beb040a
28329d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import pipeline

clf = pipeline("text-classification", model="MayZhou/e5-small-lora-ai-generated-detector")

def detect_ai(text):
    if not text.strip():
        return "No text provided."
    try:
        result = clf(text)[0]
        label = result['label']
        score = round(result['score'] * 100, 2)
        return f"{label} ({score}%)"
    except Exception as e:
        return f"Error: {str(e)}"

# Launch the app with a basic Gradio Interface (exposes /predict endpoint)
demo = gr.Interface(
    fn=detect_ai,
    inputs=gr.Textbox(lines=4, label="Enter text"),
    outputs="text",
    title="AI Text Detector",
)

demo.launch()