Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,103 @@
|
|
1 |
-
from gradio_client import Client, handle_file
|
2 |
-
import pandas as pd
|
3 |
-
import gradio as gr
|
4 |
-
from vosk import Model, KaldiRecognizer
|
5 |
-
import json
|
6 |
-
import wave
|
7 |
-
|
8 |
-
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune")
|
9 |
-
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish")
|
10 |
-
clientAud = Client("dj-dawgs-ipd/IPD_Audio_HuBERT")
|
11 |
-
|
12 |
-
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv', encoding='utf-8')
|
13 |
-
profanity_hn = profanity_df['profanity_hn']
|
14 |
-
vosk_model = Model(lang="en-us")
|
15 |
-
|
16 |
-
|
17 |
-
# import whisper
|
18 |
-
# def stt_whisper(file_path):
|
19 |
-
# model = whisper.load_model("base")
|
20 |
-
# try:
|
21 |
-
# result = model.transcribe(file_path)
|
22 |
-
# return result["text"]
|
23 |
-
# except Exception as e:
|
24 |
-
# print(e)
|
25 |
-
# return ""
|
26 |
-
|
27 |
-
|
28 |
-
def stt_vosk(file_path):
|
29 |
-
try:
|
30 |
-
wf = wave.open(file_path, "rb")
|
31 |
-
rec = KaldiRecognizer(vosk_model, wf.getframerate())
|
32 |
-
rec.SetWords(True)
|
33 |
-
rec.SetPartialWords(True)
|
34 |
-
while True:
|
35 |
-
data = wf.readframes(4000)
|
36 |
-
if len(data) == 0:
|
37 |
-
break
|
38 |
-
rec.AcceptWaveform(data)
|
39 |
-
data = json.loads(rec.FinalResult())
|
40 |
-
return data["text"]
|
41 |
-
except:
|
42 |
-
return ""
|
43 |
-
|
44 |
-
|
45 |
-
def extract_text(audio_path):
|
46 |
-
return stt_vosk(audio_path).lower()
|
47 |
-
|
48 |
-
|
49 |
-
def predict_hate_speech(audio_path):
|
50 |
-
|
51 |
-
audResult = clientAud.predict(
|
52 |
-
audio_path=handle_file(audio_path),
|
53 |
-
api_name="/predict"
|
54 |
-
)
|
55 |
-
audResult = json.loads(audResult.replace("'", '"'))
|
56 |
-
|
57 |
-
stt_text = extract_text(audio_path)
|
58 |
-
|
59 |
-
engResult = clientEngText.predict(
|
60 |
-
text=stt_text[:200],
|
61 |
-
api_name="/predict"
|
62 |
-
)
|
63 |
-
|
64 |
-
hingResult = clientHingText.predict(
|
65 |
-
text=stt_text[:200],
|
66 |
-
api_name="/predict"
|
67 |
-
)
|
68 |
-
|
69 |
-
profanityFound = any(word in stt_text.split() for word in profanity_hn)
|
70 |
-
threshold = 0.6
|
71 |
-
isHate = (engResult[0] != "NEITHER" and engResult[1] > threshold) or (
|
72 |
-
hingResult[0] != "NAG" and hingResult[1] > threshold) or (
|
73 |
-
audResult['Classification'] == 'Hate Speech\n' and audResult['Confidence'] > threshold)
|
74 |
-
|
75 |
-
engConf = engResult[1] if engResult[0] != "NEITHER" else (1 - engResult[1])
|
76 |
-
hingConf = hingResult[1] if hingResult[0] != "NEITHER" else (1 - hingResult[1])
|
77 |
-
audConf = audResult['Confidence'] if audResult['Classification'] == 'Hate Speech\n' else (1 - audResult['Confidence'])
|
78 |
-
|
79 |
-
confidence = (engConf + hingConf + audConf) / 3
|
80 |
-
# print(profanityFound, engResult, hingResult, audResult)
|
81 |
-
if profanityFound:
|
82 |
-
return ["hate", f"Result: Profanity Found", f"Text: {stt_text}"]
|
83 |
-
elif isHate:
|
84 |
-
return ["hate", f"Confidence: {confidence}", f"Text: {stt_text}"]
|
85 |
-
|
86 |
-
return ["not_hate", "No hate found, yay!"]
|
87 |
-
|
88 |
-
|
89 |
-
iface = gr.Interface(
|
90 |
-
fn=predict_hate_speech,
|
91 |
-
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
92 |
-
outputs=gr.Textbox(label="Hate Speech Analysis"),
|
93 |
-
title="Hate Speech Audio Pipeline",
|
94 |
-
description="Upload an audio file to detect potential hate speech content.",
|
95 |
-
examples=[
|
96 |
-
["
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
1 |
+
from gradio_client import Client, handle_file
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
from vosk import Model, KaldiRecognizer
|
5 |
+
import json
|
6 |
+
import wave
|
7 |
+
|
8 |
+
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune")
|
9 |
+
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish")
|
10 |
+
clientAud = Client("dj-dawgs-ipd/IPD_Audio_HuBERT")
|
11 |
+
|
12 |
+
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv', encoding='utf-8')
|
13 |
+
profanity_hn = profanity_df['profanity_hn']
|
14 |
+
vosk_model = Model(lang="en-us")
|
15 |
+
|
16 |
+
|
17 |
+
# import whisper
|
18 |
+
# def stt_whisper(file_path):
|
19 |
+
# model = whisper.load_model("base")
|
20 |
+
# try:
|
21 |
+
# result = model.transcribe(file_path)
|
22 |
+
# return result["text"]
|
23 |
+
# except Exception as e:
|
24 |
+
# print(e)
|
25 |
+
# return ""
|
26 |
+
|
27 |
+
|
28 |
+
def stt_vosk(file_path):
|
29 |
+
try:
|
30 |
+
wf = wave.open(file_path, "rb")
|
31 |
+
rec = KaldiRecognizer(vosk_model, wf.getframerate())
|
32 |
+
rec.SetWords(True)
|
33 |
+
rec.SetPartialWords(True)
|
34 |
+
while True:
|
35 |
+
data = wf.readframes(4000)
|
36 |
+
if len(data) == 0:
|
37 |
+
break
|
38 |
+
rec.AcceptWaveform(data)
|
39 |
+
data = json.loads(rec.FinalResult())
|
40 |
+
return data["text"]
|
41 |
+
except:
|
42 |
+
return ""
|
43 |
+
|
44 |
+
|
45 |
+
def extract_text(audio_path):
|
46 |
+
return stt_vosk(audio_path).lower()
|
47 |
+
|
48 |
+
|
49 |
+
def predict_hate_speech(audio_path):
|
50 |
+
|
51 |
+
audResult = clientAud.predict(
|
52 |
+
audio_path=handle_file(audio_path),
|
53 |
+
api_name="/predict"
|
54 |
+
)
|
55 |
+
audResult = json.loads(audResult.replace("'", '"'))
|
56 |
+
|
57 |
+
stt_text = extract_text(audio_path)
|
58 |
+
|
59 |
+
engResult = clientEngText.predict(
|
60 |
+
text=stt_text[:200],
|
61 |
+
api_name="/predict"
|
62 |
+
)
|
63 |
+
|
64 |
+
hingResult = clientHingText.predict(
|
65 |
+
text=stt_text[:200],
|
66 |
+
api_name="/predict"
|
67 |
+
)
|
68 |
+
|
69 |
+
profanityFound = any(word in stt_text.split() for word in profanity_hn)
|
70 |
+
threshold = 0.6
|
71 |
+
isHate = (engResult[0] != "NEITHER" and engResult[1] > threshold) or (
|
72 |
+
hingResult[0] != "NAG" and hingResult[1] > threshold) or (
|
73 |
+
audResult['Classification'] == 'Hate Speech\n' and audResult['Confidence'] > threshold)
|
74 |
+
|
75 |
+
engConf = engResult[1] if engResult[0] != "NEITHER" else (1 - engResult[1])
|
76 |
+
hingConf = hingResult[1] if hingResult[0] != "NEITHER" else (1 - hingResult[1])
|
77 |
+
audConf = audResult['Confidence'] if audResult['Classification'] == 'Hate Speech\n' else (1 - audResult['Confidence'])
|
78 |
+
|
79 |
+
confidence = (engConf + hingConf + audConf) / 3
|
80 |
+
# print(profanityFound, engResult, hingResult, audResult)
|
81 |
+
if profanityFound:
|
82 |
+
return ["hate", f"Result: Profanity Found", f"Text: {stt_text}"]
|
83 |
+
elif isHate:
|
84 |
+
return ["hate", f"Confidence: {confidence}", f"Text: {stt_text}"]
|
85 |
+
|
86 |
+
return ["not_hate", "No hate found, yay!"]
|
87 |
+
|
88 |
+
|
89 |
+
iface = gr.Interface(
|
90 |
+
fn=predict_hate_speech,
|
91 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
92 |
+
outputs=gr.Textbox(label="Hate Speech Analysis"),
|
93 |
+
title="Hate Speech Audio Pipeline",
|
94 |
+
description="Upload an audio file to detect potential hate speech content.",
|
95 |
+
examples=[
|
96 |
+
["hate_1.wav"],
|
97 |
+
["hate_2.wav"]
|
98 |
+
],
|
99 |
+
allow_flagging="manual"
|
100 |
+
)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
iface.launch()
|