Spaces:
Sleeping
Sleeping
Update the interface completely
Browse files
app.py
CHANGED
@@ -1,7 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT!
|
2 |
+
|
3 |
+
# %% auto 0
|
4 |
+
__all__ = ['learn', 'categories', 'audio', 'label', 'inf', 'extract_emotion', 'get_y', 'classify_audio']
|
5 |
+
|
6 |
+
from fastai.vision.all import *
|
7 |
import gradio as gr
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import librosa
|
10 |
+
import librosa.display
|
11 |
+
from pathlib import Path
|
12 |
+
import os
|
13 |
+
|
14 |
+
def extract_emotion(file_name: str) -> str:
|
15 |
+
"""
|
16 |
+
Given the name of the file, return the label
|
17 |
+
indicating the emotion associated with the audio.
|
18 |
+
"""
|
19 |
+
# Split the filename at each underscore
|
20 |
+
parts = file_name.split('_')
|
21 |
+
# Label is after second
|
22 |
+
label_with_extension = parts[-1]
|
23 |
+
# Remove the extension to get only the label
|
24 |
+
label = label_with_extension[:-4]
|
25 |
+
return label
|
26 |
+
|
27 |
+
def get_y(filepath): return extract_emotion(str(filepath).split("/")[-1])
|
28 |
+
|
29 |
+
# Load Learner
|
30 |
+
learn = load_learner("emotion_model.pkl")
|
31 |
+
categories = learn.dls.vocab
|
32 |
+
|
33 |
+
def classify_audio(audio_file):
|
34 |
+
"""
|
35 |
+
Takes the audio file and returns its
|
36 |
+
prediction of emotions along with probabilities.
|
37 |
+
"""
|
38 |
+
# Load the audio file
|
39 |
+
sample, sample_rate = librosa.load(audio_file, sr=None, duration=20)
|
40 |
+
# Create spectogram
|
41 |
+
S = librosa.feature.melspectrogram(y=sample, sr=sample_rate)
|
42 |
+
S_DB = librosa.power_to_db(S, ref=np.max)
|
43 |
+
# Prepare the figure for saving the spectrogram
|
44 |
+
fig, ax = plt.subplots()
|
45 |
+
fig.tight_layout(pad=0)
|
46 |
+
# Create the spectogram image
|
47 |
+
img = librosa.display.specshow(S_DB, sr=sample_rate, x_axis='time',
|
48 |
+
y_axis='mel', ax=ax)
|
49 |
+
# Turn off the axis for saving
|
50 |
+
plt.axis('off')
|
51 |
+
# Save the spectogram temporarily
|
52 |
+
temp_img_path = Path("temp_spectogram.png")
|
53 |
+
plt.savefig(temp_img_path)
|
54 |
+
|
55 |
+
pred,idx, probs = learn.predict(temp_img_path)
|
56 |
+
|
57 |
+
# Remove the temporary spectogram image
|
58 |
+
os.remove(temp_img_path)
|
59 |
|
60 |
+
return dict(zip(categories, map(float, probs)))
|
|
|
61 |
|
62 |
+
audio = gr.Audio(type="filepath", label="Upload Audio <=20 seconds")
|
63 |
+
label = gr.Label()
|
64 |
+
# Gradio Interface
|
65 |
+
inf = gr.Interface(fn=classify_audio, inputs=audio, outputs=label)
|
66 |
+
inf.launch()
|