divano commited on
Commit
d9d7c98
·
1 Parent(s): 1374df8
Files changed (1) hide show
  1. app.py +15 -10
app.py CHANGED
@@ -1,15 +1,20 @@
1
- import gradio as gr
2
  from transformers import pipeline
 
3
 
4
  pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
6
- def predict(image):
 
 
 
 
 
 
 
 
7
  predictions = pipeline(image)
8
- return {p["label"]: p["score"] for p in predictions}
9
-
10
- gr.Interface(
11
- predict,
12
- inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
13
- outputs=gr.outputs.Label(num_top_classes=2),
14
- title="Hot Dog? Or Not?",
15
- ).launch()
 
1
+ import streamlit as st
2
  from transformers import pipeline
3
+ from PIL import Image
4
 
5
  pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
6
 
7
+ st.title("Hot Dog? Or Not?")
8
+
9
+ file_name = st.file_uploader("Upload a hot dog candidate image")
10
+
11
+ if file_name is not None:
12
+ col1, col2 = st.columns(2)
13
+
14
+ image = Image.open(file_name)
15
+ col1.image(image, use_column_width=True)
16
  predictions = pipeline(image)
17
+
18
+ col2.header("Probabilities")
19
+ for p in predictions:
20
+ col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")