from fastai.vision.all import * import gradio as gr learn = load_learner("model_2.pkl") categories = learn.dls.vocab for index, category in enumerate(categories): if category == "Random Anime Photos": categories[index] = "Others" def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.Image() label = gr.Label() examples = [ "Luffy.jpg", "Naruto-Kurama-Mode.png", "Goku.jpg", "Ichigo.jpeg", "Robin.jpeg", ] title = "Top 10 Shounen Anime Protagonists Classifier" description = "Fine tuned a resnet152 image classifier such that it is able to recognize protagonists of top 10 Shounen Animes." start_article = ( "
Animes and its protagonists this image classifier will recognize:
" ) anime_characters = [ "1. One Piece - Monkey D. LuffyRest all other anime characters will be classified as others.
" final_article = start_article + "".join(anime_characters) + end_article intf = gr.Interface( fn=classify_image, inputs=image, outputs=label, examples=examples, title=title, description=description, article=final_article, ) intf.launch(inline=False, share=True)