edbeeching
commited on
Commit
·
1f60a20
1
Parent(s):
9346f1c
updates eval leaderboard so new evals can be added
Browse files
app.py
CHANGED
|
@@ -2,21 +2,27 @@ import os
|
|
| 2 |
import shutil
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
-
from huggingface_hub import Repository
|
|
|
|
| 6 |
import json
|
| 7 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 8 |
import pandas as pd
|
|
|
|
|
|
|
| 9 |
# clone / pull the lmeh eval data
|
| 10 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
|
|
|
|
|
|
| 11 |
repo=None
|
| 12 |
if H4_TOKEN:
|
|
|
|
| 13 |
# try:
|
| 14 |
# shutil.rmtree("./evals/")
|
| 15 |
# except:
|
| 16 |
# pass
|
| 17 |
|
| 18 |
repo = Repository(
|
| 19 |
-
local_dir="./evals/", clone_from=
|
| 20 |
)
|
| 21 |
repo.git_pull()
|
| 22 |
|
|
@@ -24,16 +30,13 @@ if H4_TOKEN:
|
|
| 24 |
# parse the results
|
| 25 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 26 |
BENCH_TO_NAME = {
|
| 27 |
-
"arc_challenge":"ARC",
|
| 28 |
-
"hellaswag":"HellaSwag",
|
| 29 |
-
"hendrycks":"MMLU",
|
| 30 |
-
"truthfulqa_mc":"TruthQA",
|
| 31 |
}
|
| 32 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 33 |
|
| 34 |
-
entries = [entry for entry in os.listdir("evals") if not entry.startswith('.')]
|
| 35 |
-
model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
|
| 36 |
-
|
| 37 |
|
| 38 |
def make_clickable_model(model_name):
|
| 39 |
# remove user from model name
|
|
@@ -53,11 +56,34 @@ def load_results(model, benchmark, metric):
|
|
| 53 |
mean_acc = np.mean(accs)
|
| 54 |
return mean_acc, data["config"]["model_args"]
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def get_leaderboard():
|
| 59 |
if repo:
|
|
|
|
| 60 |
repo.git_pull()
|
|
|
|
|
|
|
| 61 |
all_data = []
|
| 62 |
for model in model_directories:
|
| 63 |
model_data = {"base_model": None}
|
|
@@ -65,46 +91,173 @@ def get_leaderboard():
|
|
| 65 |
|
| 66 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
| 67 |
value, base_model = load_results(model, benchmark, metric)
|
| 68 |
-
model_data[BENCH_TO_NAME[benchmark]] = value
|
| 69 |
if base_model is not None: # in case the last benchmark failed
|
| 70 |
model_data["base_model"] = base_model
|
| 71 |
|
| 72 |
-
model_data["total"] = sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values())
|
| 73 |
|
| 74 |
if model_data["base_model"] is not None:
|
| 75 |
model_data["base_model"] = make_clickable_model(model_data["base_model"])
|
|
|
|
|
|
|
|
|
|
| 76 |
all_data.append(model_data)
|
| 77 |
|
| 78 |
dataframe = pd.DataFrame.from_records(all_data)
|
| 79 |
-
dataframe = dataframe.sort_values(by=['total'], ascending=False)
|
| 80 |
|
| 81 |
dataframe = dataframe[COLS]
|
| 82 |
return dataframe
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
leaderboard = get_leaderboard()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
block = gr.Blocks()
|
| 87 |
with block:
|
| 88 |
-
gr.
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
with gr.Row():
|
| 94 |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
|
| 95 |
datatype=TYPES, max_rows=5)
|
|
|
|
|
|
|
|
|
|
| 96 |
with gr.Row():
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
|
|
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
block.launch()
|
| 103 |
|
|
|
|
|
|
|
| 104 |
def refresh_leaderboard():
|
| 105 |
leaderboard_table = get_leaderboard()
|
| 106 |
print("leaderboard updated")
|
| 107 |
|
| 108 |
scheduler = BackgroundScheduler()
|
| 109 |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
|
| 110 |
-
scheduler.start()
|
|
|
|
|
|
|
|
|
| 2 |
import shutil
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
+
from huggingface_hub import Repository, HfApi
|
| 6 |
+
from transformers import AutoConfig
|
| 7 |
import json
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
import pandas as pd
|
| 10 |
+
import datetime
|
| 11 |
+
|
| 12 |
# clone / pull the lmeh eval data
|
| 13 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 14 |
+
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
| 15 |
+
|
| 16 |
repo=None
|
| 17 |
if H4_TOKEN:
|
| 18 |
+
print("pulling repo")
|
| 19 |
# try:
|
| 20 |
# shutil.rmtree("./evals/")
|
| 21 |
# except:
|
| 22 |
# pass
|
| 23 |
|
| 24 |
repo = Repository(
|
| 25 |
+
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
|
| 26 |
)
|
| 27 |
repo.git_pull()
|
| 28 |
|
|
|
|
| 30 |
# parse the results
|
| 31 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 32 |
BENCH_TO_NAME = {
|
| 33 |
+
"arc_challenge":"ARC (25-shot) ⬆️",
|
| 34 |
+
"hellaswag":"HellaSwag (10-shot) ⬆️",
|
| 35 |
+
"hendrycks":"MMLU (5-shot) ⬆️",
|
| 36 |
+
"truthfulqa_mc":"TruthQA (0-shot) ⬆️",
|
| 37 |
}
|
| 38 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 39 |
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def make_clickable_model(model_name):
|
| 42 |
# remove user from model name
|
|
|
|
| 56 |
mean_acc = np.mean(accs)
|
| 57 |
return mean_acc, data["config"]["model_args"]
|
| 58 |
|
| 59 |
+
def get_n_params(base_model):
|
| 60 |
+
|
| 61 |
+
# config = AutoConfig.from_pretrained(model_name)
|
| 62 |
+
|
| 63 |
+
# # Retrieve the number of parameters from the configuration
|
| 64 |
+
# try:
|
| 65 |
+
# num_params = config.n_parameters
|
| 66 |
+
# except AttributeError:
|
| 67 |
+
# print(f"Error: The number of parameters is not available in the config for the model '{model_name}'.")
|
| 68 |
+
# return None
|
| 69 |
+
|
| 70 |
+
# return num_params
|
| 71 |
+
|
| 72 |
+
now = datetime.datetime.now()
|
| 73 |
+
time_string = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 74 |
+
return time_string
|
| 75 |
+
|
| 76 |
+
COLS = ["eval_name", "# params", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️", "base_model"]
|
| 77 |
+
TYPES = ["str","str", "number", "number", "number", "number", "number","markdown", ]
|
| 78 |
+
|
| 79 |
+
EVAL_COLS = ["model","# params", "private", "8bit_eval", "is_delta_weight", "status"]
|
| 80 |
+
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
|
| 81 |
def get_leaderboard():
|
| 82 |
if repo:
|
| 83 |
+
print("pulling changes")
|
| 84 |
repo.git_pull()
|
| 85 |
+
entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests")]
|
| 86 |
+
model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
|
| 87 |
all_data = []
|
| 88 |
for model in model_directories:
|
| 89 |
model_data = {"base_model": None}
|
|
|
|
| 91 |
|
| 92 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
| 93 |
value, base_model = load_results(model, benchmark, metric)
|
| 94 |
+
model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
|
| 95 |
if base_model is not None: # in case the last benchmark failed
|
| 96 |
model_data["base_model"] = base_model
|
| 97 |
|
| 98 |
+
model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
|
| 99 |
|
| 100 |
if model_data["base_model"] is not None:
|
| 101 |
model_data["base_model"] = make_clickable_model(model_data["base_model"])
|
| 102 |
+
|
| 103 |
+
model_data["# params"] = get_n_params(model_data["base_model"])
|
| 104 |
+
|
| 105 |
all_data.append(model_data)
|
| 106 |
|
| 107 |
dataframe = pd.DataFrame.from_records(all_data)
|
| 108 |
+
dataframe = dataframe.sort_values(by=['total ⬆️'], ascending=False)
|
| 109 |
|
| 110 |
dataframe = dataframe[COLS]
|
| 111 |
return dataframe
|
| 112 |
|
| 113 |
+
def get_eval_table():
|
| 114 |
+
if repo:
|
| 115 |
+
print("pulling changes for eval")
|
| 116 |
+
repo.git_pull()
|
| 117 |
+
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')]
|
| 118 |
+
all_evals = []
|
| 119 |
+
|
| 120 |
+
for entry in entries:
|
| 121 |
+
print(entry)
|
| 122 |
+
if ".json"in entry:
|
| 123 |
+
file_path = os.path.join("evals/eval_requests", entry)
|
| 124 |
+
with open(file_path) as fp:
|
| 125 |
+
data = json.load(fp)
|
| 126 |
+
|
| 127 |
+
data["# params"] = get_n_params(data["model"])
|
| 128 |
+
data["model"] = make_clickable_model(data["model"])
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
all_evals.append(data)
|
| 132 |
+
else:
|
| 133 |
+
# this is a folder
|
| 134 |
+
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')]
|
| 135 |
+
for sub_entry in sub_entries:
|
| 136 |
+
file_path = os.path.join("evals/eval_requests", entry, sub_entry)
|
| 137 |
+
with open(file_path) as fp:
|
| 138 |
+
data = json.load(fp)
|
| 139 |
+
|
| 140 |
+
data["# params"] = get_n_params(data["model"])
|
| 141 |
+
data["model"] = make_clickable_model(data["model"])
|
| 142 |
+
all_evals.append(data)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
dataframe = pd.DataFrame.from_records(all_evals)
|
| 146 |
+
return dataframe[EVAL_COLS]
|
| 147 |
+
|
| 148 |
+
|
| 149 |
leaderboard = get_leaderboard()
|
| 150 |
+
eval_queue = get_eval_table()
|
| 151 |
+
|
| 152 |
+
def is_model_on_hub(model_name) -> bool:
|
| 153 |
+
try:
|
| 154 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 155 |
+
return True
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
print("Could not get the model config from the hub")
|
| 159 |
+
print(e)
|
| 160 |
+
return False
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def add_new_eval(model:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool):
|
| 165 |
+
# check the model actually exists before adding the eval
|
| 166 |
+
if not is_model_on_hub(model):
|
| 167 |
+
print(model, "not found on hub")
|
| 168 |
+
return
|
| 169 |
+
print("adding new eval")
|
| 170 |
+
|
| 171 |
+
eval_entry = {
|
| 172 |
+
"model" : model,
|
| 173 |
+
"private" : private,
|
| 174 |
+
"8bit_eval" : is_8_bit_eval,
|
| 175 |
+
"is_delta_weight" : is_delta_weight,
|
| 176 |
+
"status" : "PENDING"
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
user_name = ""
|
| 180 |
+
model_path = model
|
| 181 |
+
if "/" in model:
|
| 182 |
+
user_name = model.split("/")[0]
|
| 183 |
+
model_path = model.split("/")[1]
|
| 184 |
+
|
| 185 |
+
OUT_DIR=f"eval_requests/{user_name}"
|
| 186 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
| 187 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
|
| 188 |
+
|
| 189 |
+
with open(out_path, "w") as f:
|
| 190 |
+
f.write(json.dumps(eval_entry))
|
| 191 |
+
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
| 192 |
+
|
| 193 |
+
api = HfApi()
|
| 194 |
+
api.upload_file(
|
| 195 |
+
path_or_fileobj=out_path,
|
| 196 |
+
path_in_repo=out_path,
|
| 197 |
+
repo_id=LMEH_REPO,
|
| 198 |
+
token=H4_TOKEN,
|
| 199 |
+
repo_type="dataset",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def refresh():
|
| 204 |
+
return get_leaderboard(), get_eval_table()
|
| 205 |
+
|
| 206 |
+
|
| 207 |
|
| 208 |
block = gr.Blocks()
|
| 209 |
with block:
|
| 210 |
+
with gr.Row():
|
| 211 |
+
gr.Markdown(f"""
|
| 212 |
+
# 🤗 H4 Model Evaluation leaderboard using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> LMEH benchmark suite </a>.
|
| 213 |
+
Evaluation is performed against 4 popular benchmarks AI2 Reasoning Challenge, HellaSwag, MMLU, and TruthFul QC MC. To run your own benchmarks, refer to the README in the H4 repo.
|
| 214 |
+
""")
|
| 215 |
|
| 216 |
with gr.Row():
|
| 217 |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
|
| 218 |
datatype=TYPES, max_rows=5)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
with gr.Row():
|
| 223 |
+
gr.Markdown(f"""
|
| 224 |
+
# Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the 🤗 cluster
|
| 225 |
|
| 226 |
+
""")
|
| 227 |
|
| 228 |
+
with gr.Row():
|
| 229 |
+
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
|
| 230 |
+
datatype=EVAL_TYPES, max_rows=5)
|
| 231 |
+
|
| 232 |
+
with gr.Row():
|
| 233 |
+
refresh_button = gr.Button("Refresh")
|
| 234 |
+
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table])
|
| 235 |
+
|
| 236 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
| 237 |
+
# with gr.Row():
|
| 238 |
+
# gr.Markdown(f"""# Submit a new model for evaluation""")
|
| 239 |
+
with gr.Row():
|
| 240 |
+
model_name_textbox = gr.Textbox(label="model_name")
|
| 241 |
+
is_8bit_toggle = gr.Checkbox(False, label="8 bit Eval?")
|
| 242 |
+
private = gr.Checkbox(False, label="Private?")
|
| 243 |
+
is_delta_weight = gr.Checkbox(False, label="Delta Weights?")
|
| 244 |
+
|
| 245 |
+
with gr.Row():
|
| 246 |
+
submit_button = gr.Button("Submit Eval")
|
| 247 |
+
submit_button.click(add_new_eval, [model_name_textbox, is_8bit_toggle, private, is_delta_weight])
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
|
|
|
|
| 252 |
|
| 253 |
+
|
| 254 |
+
print("adding refresh leaderboard")
|
| 255 |
def refresh_leaderboard():
|
| 256 |
leaderboard_table = get_leaderboard()
|
| 257 |
print("leaderboard updated")
|
| 258 |
|
| 259 |
scheduler = BackgroundScheduler()
|
| 260 |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins
|
| 261 |
+
scheduler.start()
|
| 262 |
+
|
| 263 |
+
block.launch()
|