test use chronoboros instead
Browse files
app.py
CHANGED
|
@@ -1,48 +1,38 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
-
response = ""
|
| 29 |
-
|
| 30 |
-
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
additional_inputs=[
|
|
@@ -59,6 +49,5 @@ demo = gr.ChatInterface(
|
|
| 59 |
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
|
| 4 |
+
# Load the model and tokenizer (you may need to adjust device_map or other settings depending on your hardware)
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Chronoboros-33B-GPTQ")
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained("TheBloke/Chronoboros-33B-GPTQ", device_map="auto")
|
| 7 |
+
|
| 8 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
| 9 |
+
# Build the prompt using conversation history
|
| 10 |
+
prompt = f"{system_message}\n"
|
| 11 |
+
for user_text, assistant_text in history:
|
| 12 |
+
if user_text:
|
| 13 |
+
prompt += f"User: {user_text}\n"
|
| 14 |
+
if assistant_text:
|
| 15 |
+
prompt += f"Assistant: {assistant_text}\n"
|
| 16 |
+
prompt += f"User: {message}\nAssistant: "
|
| 17 |
+
|
| 18 |
+
# Tokenize the prompt and generate a response
|
| 19 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
| 20 |
+
output_ids = model.generate(
|
| 21 |
+
input_ids,
|
| 22 |
+
max_new_tokens=max_tokens,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
temperature=temperature,
|
| 24 |
top_p=top_p,
|
| 25 |
+
do_sample=True, # enable sampling for varied responses
|
| 26 |
+
)
|
| 27 |
+
# Get only the newly generated tokens (after the prompt)
|
| 28 |
+
new_tokens = output_ids[0][input_ids.shape[1]:]
|
| 29 |
|
| 30 |
+
# Simulate streaming by yielding partial responses token by token
|
| 31 |
+
for i in range(new_tokens.shape[0]):
|
| 32 |
+
current_response = tokenizer.decode(new_tokens[: i + 1], skip_special_tokens=True)
|
| 33 |
+
yield current_response
|
| 34 |
|
| 35 |
+
# Configure the ChatInterface with additional inputs
|
|
|
|
|
|
|
|
|
|
| 36 |
demo = gr.ChatInterface(
|
| 37 |
respond,
|
| 38 |
additional_inputs=[
|
|
|
|
| 49 |
],
|
| 50 |
)
|
| 51 |
|
|
|
|
| 52 |
if __name__ == "__main__":
|
| 53 |
demo.launch()
|