Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
+
import torch
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Load the model and tokenizer
|
11 |
+
@st.cache(allow_output_mutation=True)
|
12 |
+
def load_model():
|
13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
14 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=8)
|
15 |
+
return tokenizer, model
|
16 |
+
|
17 |
+
tokenizer, model = load_model()
|
18 |
+
|
19 |
+
# Custom sentiments
|
20 |
+
sentiments = ["happy", "motivated", "growth", "optimistic", "jealousy", "frustrated", "decline", "angry"]
|
21 |
+
|
22 |
+
# Define the preprocessing function
|
23 |
+
def preprocess_text(text):
|
24 |
+
text = re.sub(r'[^\w\s]', '', text.lower()) # Remove punctuation and lowercase
|
25 |
+
text = re.sub(r'\d+', '', text) # Remove numbers
|
26 |
+
return text
|
27 |
+
|
28 |
+
# Title and instructions
|
29 |
+
st.title("Sentiment Analysis of Financial News")
|
30 |
+
st.write("Enter a sentence to analyze its sentiment across predefined categories.")
|
31 |
+
|
32 |
+
# Input text from user
|
33 |
+
text = st.text_input("Enter a sentence:", "")
|
34 |
+
|
35 |
+
if text:
|
36 |
+
# Preprocess and tokenize
|
37 |
+
cleaned_text = preprocess_text(text)
|
38 |
+
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True)
|
39 |
+
|
40 |
+
# Get model predictions
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
43 |
+
sentiment_score = outputs.logits.softmax(dim=1)
|
44 |
+
|
45 |
+
# Convert tensor to list for plotting
|
46 |
+
score_list = sentiment_score.tolist()[0]
|
47 |
+
|
48 |
+
# Display sentiment scores as a table
|
49 |
+
st.subheader("Sentiment Scores")
|
50 |
+
score_df = pd.DataFrame({"Sentiment": sentiments, "Score": score_list})
|
51 |
+
st.dataframe(score_df)
|
52 |
+
|
53 |
+
# Plot the sentiment scores
|
54 |
+
st.subheader("Sentiment Score Chart")
|
55 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
56 |
+
mustard_yellow = "#FFDB58"
|
57 |
+
|
58 |
+
# Plot bars with spacing and color
|
59 |
+
ax.bar(np.arange(len(sentiments)) * 1.5, score_list, color=mustard_yellow, edgecolor="black", width=0.8)
|
60 |
+
|
61 |
+
# Customize the plot
|
62 |
+
ax.set_xlabel("Sentiments", color="black", fontsize=12)
|
63 |
+
ax.set_ylabel("Scores", color="black", fontsize=12)
|
64 |
+
ax.set_title("Sentiment Analysis of Financial News", color="black", fontsize=14)
|
65 |
+
ax.set_xticks(np.arange(len(sentiments)) * 1.5)
|
66 |
+
ax.set_xticklabels(sentiments, color="black", fontsize=10, rotation=45)
|
67 |
+
ax.tick_params(axis="y", colors="black")
|
68 |
+
|
69 |
+
# Display the plot in Streamlit
|
70 |
+
st.pyplot(fig)
|