|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
import random |
|
from PIL import Image |
|
|
|
from diffusers import FluxKontextPipeline |
|
from diffusers.utils import load_image |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
def concatenate_images(images, direction="horizontal"): |
|
""" |
|
Concatenate multiple PIL images either horizontally or vertically. |
|
|
|
Args: |
|
images: List of PIL Images |
|
direction: "horizontal" or "vertical" |
|
|
|
Returns: |
|
PIL Image: Concatenated image |
|
""" |
|
if not images: |
|
return None |
|
|
|
|
|
valid_images = [img for img in images if img is not None] |
|
|
|
if not valid_images: |
|
return None |
|
|
|
if len(valid_images) == 1: |
|
return valid_images[0].convert("RGB") |
|
|
|
|
|
valid_images = [img.convert("RGB") for img in valid_images] |
|
|
|
if direction == "horizontal": |
|
|
|
total_width = sum(img.width for img in valid_images) |
|
max_height = max(img.height for img in valid_images) |
|
|
|
|
|
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255)) |
|
|
|
|
|
x_offset = 0 |
|
for img in valid_images: |
|
|
|
y_offset = (max_height - img.height) // 2 |
|
concatenated.paste(img, (x_offset, y_offset)) |
|
x_offset += img.width |
|
|
|
else: |
|
|
|
max_width = max(img.width for img in valid_images) |
|
total_height = sum(img.height for img in valid_images) |
|
|
|
|
|
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255)) |
|
|
|
|
|
y_offset = 0 |
|
for img in valid_images: |
|
|
|
x_offset = (max_width - img.width) // 2 |
|
concatenated.paste(img, (x_offset, y_offset)) |
|
y_offset += img.height |
|
|
|
return concatenated |
|
|
|
@spaces.GPU |
|
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
if input_images is None: |
|
raise gr.Error("Please upload at least one image.") |
|
|
|
|
|
if not isinstance(input_images, list): |
|
input_images = [input_images] |
|
|
|
|
|
valid_images = [img[0] for img in input_images if img is not None] |
|
|
|
if not valid_images: |
|
raise gr.Error("Please upload at least one valid image.") |
|
|
|
|
|
concatenated_image = concatenate_images(valid_images, "horizontal") |
|
|
|
if concatenated_image is None: |
|
raise gr.Error("Failed to process the input images.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources." |
|
|
|
image = pipe( |
|
image=concatenated_image, |
|
prompt=final_prompt, |
|
guidance_scale=guidance_scale, |
|
width=concatenated_image.size[0], |
|
height=concatenated_image.size[1], |
|
generator=torch.Generator().manual_seed(seed), |
|
).images[0] |
|
|
|
return image, seed, gr.update(visible=True) |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 960px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image |
|
Flux Kontext with multiple image input support - compose a new image with elements from multiple images using Kontext [dev] |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_images = gr.Gallery( |
|
label="Upload image(s) for editing", |
|
show_label=True, |
|
elem_id="gallery_input", |
|
columns=3, |
|
rows=2, |
|
object_fit="contain", |
|
height="auto", |
|
file_types=['image'], |
|
type='pil' |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
info = "describe the desired output composition", |
|
max_lines=1, |
|
placeholder="e.g. the dog from the left image sits on the bench from the right image", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=10, |
|
step=0.1, |
|
value=2.5, |
|
) |
|
|
|
with gr.Column(): |
|
result = gr.Image(label="Result", show_label=False, interactive=False) |
|
reuse_button = gr.Button("Reuse this image", visible=False) |
|
|
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale], |
|
outputs = [result, seed, reuse_button] |
|
) |
|
|
|
reuse_button.click( |
|
fn = lambda image: [image] if image is not None else [], |
|
inputs = [result], |
|
outputs = [input_images] |
|
) |
|
|
|
demo.launch() |