|
import gradio as gr |
|
import numpy as np |
|
|
|
import spaces |
|
import torch |
|
import random |
|
from PIL import Image |
|
|
|
from kontext_pipeline import FluxKontextPipeline |
|
from diffusers import FluxTransformer2DModel |
|
from diffusers.utils import load_image |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors") |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16) |
|
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
@spaces.GPU |
|
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
input_image = input_image.convert("RGB") |
|
|
|
original_width, original_height = input_image.size |
|
|
|
if original_width >= original_height: |
|
new_width = 1024 |
|
new_height = int(original_height * (new_width / original_width)) |
|
else: |
|
new_height = 1024 |
|
new_width = int(original_width * (new_height / original_height)) |
|
|
|
input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
image = pipe( |
|
image=input_image_resized, |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator().manual_seed(seed), |
|
).images[0] |
|
return image, seed |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# FLUX.1 Kontext [dev] |
|
""") |
|
|
|
input_image = gr.Image(label="Upload the image for editing", type="pil") |
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=10, |
|
step=0.1, |
|
value=2.5, |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch() |