Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import streamlit as st | |
# Install necessary libraries using os.system | |
os.system("pip install --upgrade pip") | |
os.system("pip install streamlit llama-cpp-agent huggingface_hub trafilatura beautifulsoup4 requests duckduckgo-search googlesearch-python") | |
# Attempt to import all required modules | |
try: | |
from llama_cpp import Llama | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
from llama_cpp_agent.llm_output_settings import ( | |
LlmStructuredOutputSettings, | |
LlmStructuredOutputType, | |
) | |
from llama_cpp_agent.tools import WebSearchTool | |
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt | |
from utils import CitingSources | |
from settings import get_context_by_model, get_messages_formatter_type | |
except ImportError as e: | |
st.error(f"Error importing modules: {e}") | |
if 'utils' in str(e): | |
st.warning("Mocking utils.CitingSources") | |
class CitingSources: | |
sources = [] | |
if 'settings' in str(e): | |
st.warning("Mocking settings functions") | |
def get_context_by_model(model): | |
return 4096 | |
def get_messages_formatter_type(model): | |
return MessagesFormatterType.BASIC | |
import logging | |
from huggingface_hub import hf_hub_download | |
# Download the models | |
hf_hub_download( | |
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF", | |
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf", | |
local_dir="./models" | |
) | |
hf_hub_download( | |
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF", | |
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf", | |
local_dir="./models" | |
) | |
hf_hub_download( | |
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF", | |
filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf", | |
local_dir="./models" | |
) | |
# Function to respond to user messages | |
def respond(message, history, system_message, temperature, top_p, top_k, repeat_penalty): | |
model = "mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf" | |
max_tokens = 3000 | |
chat_template = get_messages_formatter_type(model) | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=get_context_by_model(model), | |
) | |
provider = LlamaCppPythonProvider(llm) | |
logging.info(f"Loaded chat examples: {chat_template}") | |
search_tool = WebSearchTool( | |
llm_provider=provider, | |
message_formatter_type=chat_template, | |
max_tokens_search_results=12000, | |
max_tokens_per_summary=2048, | |
) | |
web_search_agent = LlamaCppAgent( | |
provider, | |
system_prompt=web_search_system_prompt, | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True, | |
) | |
answer_agent = LlamaCppAgent( | |
provider, | |
system_prompt=research_system_prompt, | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True, | |
) | |
settings = provider.get_provider_default_settings() | |
settings.stream = False | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
output_settings = LlmStructuredOutputSettings.from_functions( | |
[search_tool.get_tool()] | |
) | |
messages = BasicChatHistory() | |
for msn in history: | |
user = {"role": Roles.user, "content": msn[0]} | |
assistant = {"role": Roles.assistant, "content": msn[1]} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
result = web_search_agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
structured_output_settings=output_settings, | |
add_message_to_chat_history=False, | |
add_response_to_chat_history=False, | |
print_output=False, | |
) | |
outputs = "" | |
settings.stream = True | |
response_text = answer_agent.get_chat_response( | |
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + | |
result[0]["return_value"], | |
role=Roles.tool, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False, | |
) | |
for text in response_text: | |
outputs += text | |
yield outputs | |
output_settings = LlmStructuredOutputSettings.from_pydantic_models( | |
[CitingSources], LlmStructuredOutputType.object_instance | |
) | |
citing_sources = answer_agent.get_chat_response( | |
"Cite the sources you used in your response.", | |
role=Roles.tool, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=False, | |
structured_output_settings=output_settings, | |
print_output=False, | |
) | |
outputs += "\n\nSources:\n" | |
outputs += "\n".join(citing_sources.sources) | |
yield outputs | |
st.title("Novav2 Web Engine") | |
message = st.text_input("Enter your message:") | |
history = st.session_state.get("history", []) | |
system_message = st.text_area("System message", value=web_search_system_prompt) | |
temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.45, step=0.1) | |
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.95, step=0.05) | |
top_k = st.slider("Top-k", min_value=0, max_value=100, value=40, step=1) | |
repeat_penalty = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.1, step=0.1) | |
if st.button("Send"): | |
response_generator = respond(message, history, system_message, temperature, top_p, top_k, repeat_penalty) | |
for response in response_generator: | |
st.write(response) | |
history.append((message, response)) | |
st.session_state["history"] = history | |