dineth554 commited on
Commit
a0c1e94
·
verified ·
1 Parent(s): 9929ecc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -58
app.py CHANGED
@@ -1,25 +1,35 @@
1
  import os
2
-
3
- # Install required libraries
4
- os.system("pip install streamlit edge_tts pydub soxr numpy onnxruntime sentencepiece huggingface_hub torch beautifulsoup4 requests urllib3")
5
 
6
  import streamlit as st
7
- import edge_tts
8
- import asyncio
9
- import tempfile
10
- import numpy as np
11
- import soxr
12
- from pydub import AudioSegment
13
  import torch
14
  import sentencepiece as spm
15
  import onnxruntime as ort
16
- from huggingface_hub import hf_hub_download, InferenceClient
 
 
 
17
  import requests
18
  from bs4 import BeautifulSoup
19
  import urllib
20
  import random
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # List of user agents to choose from for requests
23
  _useragent_list = [
24
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
25
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
@@ -31,86 +41,58 @@ _useragent_list = [
31
  ]
32
 
33
  def get_useragent():
34
- """Returns a random user agent from the list."""
35
  return random.choice(_useragent_list)
36
 
37
  def extract_text_from_webpage(html_content):
38
- """Extracts visible text from HTML content using BeautifulSoup."""
39
  soup = BeautifulSoup(html_content, "html.parser")
40
- # Remove unwanted tags
41
  for tag in soup(["script", "style", "header", "footer", "nav"]):
42
  tag.extract()
43
- # Get the remaining visible text
44
  visible_text = soup.get_text(strip=True)
45
  return visible_text
46
 
47
- def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
48
- """Performs a Google search and returns the results."""
49
  escaped_term = urllib.parse.quote_plus(term)
50
  start = 0
51
  all_results = []
52
 
53
- # Fetch results in batches
54
  while start < num_results:
55
  resp = requests.get(
56
  url="https://www.google.com/search",
57
- headers={"User-Agent": get_useragent()}, # Set random user agent
58
  params={
59
  "q": term,
60
- "num": num_results - start, # Number of results to fetch in this batch
61
- "hl": lang,
62
  "start": start,
63
- "safe": safe,
64
  },
65
- timeout=timeout,
66
- verify=ssl_verify,
67
  )
68
- resp.raise_for_status() # Raise an exception if request fails
69
-
70
  soup = BeautifulSoup(resp.text, "html.parser")
71
  result_block = soup.find_all("div", attrs={"class": "g"})
72
-
73
- # If no results, continue to the next batch
74
  if not result_block:
75
  start += 1
76
  continue
77
 
78
- # Extract link and text from each result
79
  for result in result_block:
80
  link = result.find("a", href=True)
81
  if link:
82
  link = link["href"]
83
  try:
84
- # Fetch webpage content
85
  webpage = requests.get(link, headers={"User-Agent": get_useragent()})
86
  webpage.raise_for_status()
87
- # Extract visible text from webpage
88
  visible_text = extract_text_from_webpage(webpage.text)
89
  all_results.append({"link": link, "text": visible_text})
90
  except requests.exceptions.RequestException as e:
91
- # Handle errors fetching or processing webpage
92
- print(f"Error fetching or processing {link}: {e}")
93
  all_results.append({"link": link, "text": None})
94
  else:
95
  all_results.append({"link": None, "text": None})
96
 
97
- start += len(result_block) # Update starting index for next batch
98
 
99
  return all_results
100
 
101
- # Speech Recognition Model Configuration
102
- model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
103
- sample_rate = 16000
104
-
105
- # Download preprocessor, encoder and tokenizer
106
- preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
107
- encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
108
- tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
109
-
110
- # Mistral Model Configuration
111
- client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
112
- system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
113
-
114
  def resample(audio_fp32, sr):
115
  return soxr.resample(audio_fp32, sr, sample_rate)
116
 
@@ -128,7 +110,7 @@ def transcribe(audio_path):
128
  input_signal = torch.tensor(audio_16k).unsqueeze(0)
129
  length = torch.tensor(len(audio_16k)).unsqueeze(0)
130
  processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
131
-
132
  logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
133
 
134
  blank_id = tokenizer.vocab_size()
@@ -138,8 +120,7 @@ def transcribe(audio_path):
138
  return text
139
 
140
  def model(text, web_search):
141
- if web_search is True:
142
- """Performs a web search, feeds the results to a language model, and returns the answer."""
143
  web_results = search(text)
144
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
145
  formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
@@ -162,11 +143,33 @@ async def respond(audio, web_search):
162
  # Streamlit interface
163
  st.title("OpenGPT 4o DEMO")
164
 
165
- web_search = st.checkbox("Web Search", value=False)
166
- input_audio = st.file_uploader("Upload Audio", type=["wav", "mp3", "ogg"])
167
- if st.button("Transcribe and Respond"):
168
- if input_audio:
169
- output_audio_path = asyncio.run(respond(input_audio, web_search))
170
- audio_file = open(output_audio_path, "rb")
171
- audio_bytes = audio_file.read()
172
- st.audio(audio_bytes, format="audio/wav")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ # Install necessary libraries
3
+ os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4')
 
4
 
5
  import streamlit as st
 
 
 
 
 
 
6
  import torch
7
  import sentencepiece as spm
8
  import onnxruntime as ort
9
+ from pydub import AudioSegment
10
+ import numpy as np
11
+ import soxr
12
+ import edge_tts
13
  import requests
14
  from bs4 import BeautifulSoup
15
  import urllib
16
  import random
17
+ from huggingface_hub import hf_hub_download, InferenceClient
18
+ import tempfile
19
+
20
+ # Install necessary libraries
21
+ os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4')
22
+
23
+ # Load models
24
+ model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
25
+ sample_rate = 16000
26
+ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
27
+ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
28
+ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
29
+
30
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
31
+ system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
32
 
 
33
  _useragent_list = [
34
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
35
  'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
 
41
  ]
42
 
43
  def get_useragent():
 
44
  return random.choice(_useragent_list)
45
 
46
  def extract_text_from_webpage(html_content):
 
47
  soup = BeautifulSoup(html_content, "html.parser")
 
48
  for tag in soup(["script", "style", "header", "footer", "nav"]):
49
  tag.extract()
 
50
  visible_text = soup.get_text(strip=True)
51
  return visible_text
52
 
53
+ def search(term, num_results=1):
 
54
  escaped_term = urllib.parse.quote_plus(term)
55
  start = 0
56
  all_results = []
57
 
 
58
  while start < num_results:
59
  resp = requests.get(
60
  url="https://www.google.com/search",
61
+ headers={"User-Agent": get_useragent()},
62
  params={
63
  "q": term,
64
+ "num": num_results - start,
65
+ "hl": "en",
66
  "start": start,
67
+ "safe": "active",
68
  },
69
+ timeout=5,
 
70
  )
71
+ resp.raise_for_status()
 
72
  soup = BeautifulSoup(resp.text, "html.parser")
73
  result_block = soup.find_all("div", attrs={"class": "g"})
 
 
74
  if not result_block:
75
  start += 1
76
  continue
77
 
 
78
  for result in result_block:
79
  link = result.find("a", href=True)
80
  if link:
81
  link = link["href"]
82
  try:
 
83
  webpage = requests.get(link, headers={"User-Agent": get_useragent()})
84
  webpage.raise_for_status()
 
85
  visible_text = extract_text_from_webpage(webpage.text)
86
  all_results.append({"link": link, "text": visible_text})
87
  except requests.exceptions.RequestException as e:
 
 
88
  all_results.append({"link": link, "text": None})
89
  else:
90
  all_results.append({"link": None, "text": None})
91
 
92
+ start += len(result_block)
93
 
94
  return all_results
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  def resample(audio_fp32, sr):
97
  return soxr.resample(audio_fp32, sr, sample_rate)
98
 
 
110
  input_signal = torch.tensor(audio_16k).unsqueeze(0)
111
  length = torch.tensor(len(audio_16k)).unsqueeze(0)
112
  processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
113
+
114
  logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
115
 
116
  blank_id = tokenizer.vocab_size()
 
120
  return text
121
 
122
  def model(text, web_search):
123
+ if web_search:
 
124
  web_results = search(text)
125
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
126
  formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
 
143
  # Streamlit interface
144
  st.title("OpenGPT 4o DEMO")
145
 
146
+ # Chat input interface
147
+ st.subheader("💬 SuperChat")
148
+ prompt = st.text_input("Say something")
149
+ if prompt:
150
+ web_search = st.checkbox("Web Search", value=True)
151
+ response = model(prompt, web_search)
152
+ st.write(response)
153
+
154
+ # Audio input interface
155
+ st.subheader("🗣️ Voice Chat")
156
+ audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
157
+ if audio_file:
158
+ web_search = st.checkbox("Web Search", value=False)
159
+ with st.spinner("Transcribing and generating response..."):
160
+ audio_path = audio_file.name
161
+ with open(audio_path, "wb") as f:
162
+ f.write(audio_file.getbuffer())
163
+ response_audio = await respond(audio_path, web_search)
164
+ st.audio(response_audio)
165
+ ```
166
+
167
+ ### Explanation:
168
+ 1. **Library Installation**: Uses `os.system()` to install the required libraries at the beginning of the script.
169
+ 2. **Streamlit Application**: The rest of the script remains the same as previously explained, including the Streamlit UI and the functionalities.
170
+
171
+ ### How to Run:
172
+ Save this script as `app.py` and run it using the following command:
173
+
174
+ ```bash
175
+ streamlit run app.py