import torch import gradio as gr import pytube as pt from transformers import pipeline MODEL_NAME = "openai/whisper-large-v2" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) all_special_ids = pipe.tokenizer.all_special_ids transcribe_token_id = all_special_ids[-5] translate_token_id = all_special_ids[-6] def transcribe(microphone, file_upload, task): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] textt = pipe(file, batch_size=BATCH_SIZE)["text"] with open('outt.txt', 'a+') as sw: sw.writelines(textt) return [textt,"outt.txt"] def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url, task): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"] with open('outtt.txt', 'a+') as sw: sw.writelines(text) return [text,"outtt.txt"] demo = gr.Blocks() output_2 = gr.File(label="Download") output_3 = gr.File(label="Download") description = """This application displays transcribed text for given audio input """ mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), ], outputs=["text",output_2], layout="horizontal", theme="huggingface", title="Speech to Text Converter using OpenAI Whisper Model", description= description, allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), ], outputs=["text",output_3], layout="horizontal", theme="huggingface", title="Speech to Text Converter using OpenAI Whisper Model", description=( "Transcribe YouTube Videos to Text" ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(enable_queue=True)