File size: 4,323 Bytes
1d040cb
 
 
 
fbcd930
1d040cb
12f938b
963c6da
1d040cb
fbcd930
 
 
 
 
12f938b
 
 
fbcd930
 
 
12f938b
 
fbcd930
12f938b
fbcd930
 
 
 
 
 
 
12f938b
 
fbcd930
12f938b
 
 
 
 
 
fbcd930
 
 
 
 
12f938b
 
 
 
 
 
fbcd930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca8fe98
 
963c6da
fbcd930
 
 
 
 
 
 
 
963c6da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#import streamlit as st
#from src.load_data import load_dataframe, sort_by
#from src.plot import plot_radar_chart_index, plot_radar_chart_name
#from st_aggrid import GridOptionsBuilder, AgGrid
from st_aggrid import GridOptionsBuilder, AgGrid
import streamlit as st
from .load_data import load_dataframe, sort_by, show_dataframe_top, search_by_name
from .plot import plot_radar_chart_name, plot_radar_chart_rows


def display_app():
    st.markdown("# Open LLM Leaderboard Viz")
    st.markdown("This is a visualization of the results in [open-llm-leaderboard/results](https://huggingface.co/datasets/open-llm-leaderboard/results)")
    st.markdown("To select a model, click on the checkbox beside its name.")
    st.markdown("This displays the top 100 models by default, but you can change that using the number input below.") 
    st.markdown("By defalut as well, the maximum number of row you can display is 500, it is due to the problem with st__aggrid component loading.")
    st.markdown("If your model doesn't show up, please search it by its name.")

    dataframe = load_dataframe()

    sort_selection = st.selectbox(label = "Sort by:", options = list(dataframe.columns), index = 7)
    number_of_row = st.number_input("Number of top rows to display", min_value=100, max_value=500, value="min", step=100)
    ascending = True
    
    if sort_selection is None:
        sort_selection = "model_name"
        ascending = True
    elif sort_selection == "model_name":
        ascending = True
    else:
        ascending = False


    name = st.text_input(label = ":mag: Search by name")
    len_name_input = len(name) 
    if len_name_input > 0:
        dataframe_by_search = search_by_name(name)
        if len(dataframe_by_search) > 0:
            #st.write("number of model name with name", len(dataframe_by_search))
            dataframe = dataframe_by_search
        else:
            dataframe = load_dataframe()

    dataframe = sort_by(dataframe=dataframe, column_name=sort_selection, ascending= ascending)
    dataframe_display = dataframe.copy()
    
    if len_name_input == 0:
        # Show every only top n row
        dataframe_display = show_dataframe_top(number_of_row,dataframe_display)    
        
    
    dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]].astype(float)
    dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] *100
    dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]].round(2)

    #Infer basic colDefs from dataframe types
    gb = GridOptionsBuilder.from_dataframe(dataframe_display)
    gb.configure_selection(selection_mode = "single", use_checkbox=True)
    gb.configure_grid_options(domLayout='normal')
    gridOptions = gb.build()

    column1,col3, column2 = st.columns([0.26, 0.05, 0.69], gap = "small")

    with column1:
        grid_response = AgGrid(
    dataframe_display, 
    gridOptions=gridOptions,
    height=300, 
    width='40%'
    )
        
    subdata = dataframe.head(1)
    if len(subdata) > 0:
        model_name = subdata["model_name"].values[0]
    else:
        model_name = ""

    with column2:
        if grid_response['selected_rows'] is not None and len(grid_response['selected_rows']) > 0:
            figure = plot_radar_chart_rows(rows=grid_response['selected_rows'])
            #figure = plot_radar_chart_name(dataframe= dataframe, model_name=grid_response['selected_rows'][0]["model_name"])
            st.plotly_chart(figure, use_container_width=True)
        else:
            if len(subdata)>0:
                figure = plot_radar_chart_name(dataframe=subdata, model_name=model_name)
                st.plotly_chart(figure, use_container_width=True)

    if grid_response['selected_rows'] is not None and len(grid_response['selected_rows']) > 0:
        st.markdown("**Model name:**   %s" % grid_response['selected_rows'][0]["model_name"])
    else:
        st.markdown("**Model name:**   %s" % model_name)