Spaces:
Sleeping
Sleeping
File size: 5,764 Bytes
8a5292f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import torch
from diffusers import (
StableDiffusionXLControlNetPipeline,
DiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionAdapterPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLAdapterPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
ControlNetModel,
T2IAdapter,
)
import time
dtype = torch.float16
device = torch.device("cuda")
pipeline_mapping = {
"SD T2I": (DiffusionPipeline, "runwayml/stable-diffusion-v1-5"),
"SD I2I": (StableDiffusionImg2ImgPipeline, "runwayml/stable-diffusion-v1-5"),
"SD Inpainting": (
StableDiffusionInpaintPipeline,
"runwayml/stable-diffusion-inpainting",
),
"SD ControlNet": (
StableDiffusionControlNetPipeline,
"runwayml/stable-diffusion-v1-5",
"lllyasviel/sd-controlnet-canny",
),
"SD T2I Adapters": (
StableDiffusionAdapterPipeline,
"CompVis/stable-diffusion-v1-4" "TencentARC/t2iadapter_canny_sd14v1",
),
"SDXL T2I": (DiffusionPipeline, "stabilityai/stable-diffusion-xl-base-1.0"),
"SDXL I2I": (
StableDiffusionXLImg2ImgPipeline,
"stabilityai/stable-diffusion-xl-base-1.0",
),
"SDXL Inpainting": (
StableDiffusionXLInpaintPipeline,
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
),
"SDXL ControlNet": (
StableDiffusionXLControlNetPipeline,
"stabilityai/stable-diffusion-xl-base-1.0",
"diffusers/controlnet-canny-sdxl-1.0",
),
"SDXL T2I Adapters": (
StableDiffusionXLAdapterPipeline,
"stabilityai/stable-diffusion-xl-base-1.0",
"TencentARC/t2i-adapter-canny-sdxl-1.0",
),
}
def load_pipeline(
pipeline_to_benchmark: str,
use_channels_last: bool = False,
do_torch_compile: bool = False,
):
# Get pipeline details.
pipeline_details = pipeline_mapping[pipeline_to_benchmark]
pipeline_cls = pipeline_details[0]
pipeline_ckpt = pipeline_details[1]
# Load adapter if needed.
if "ControlNet" in pipeline_to_benchmark:
controlnet_ckpt = pipeline_details[2]
controlnet = ControlNetModel.from_pretrained(
controlnet_ckpt, variant="fp16", torch_dtype=torch.float16
).to(device)
elif "Adapters" in pipeline_to_benchmark:
adapter_clpt = pipeline_details[2]
adapter = T2IAdapter.from_pretrained(
adapter_clpt, variant="fp16", torch_dtype=torch.float16
).to(device)
# Load pipeline.
if (
"ControlNet" not in pipeline_to_benchmark
or "Adapters" not in pipeline_to_benchmark
):
pipeline = pipeline_cls.from_pretrained(
pipeline_ckpt, variant="fp16", torch_dtype=dtype
)
elif "ControlNet" in pipeline_to_benchmark:
pipeline = pipeline_cls.from_pretrained(pipeline_ckpt, controlnet=controlnet)
elif "Adapters" in pipeline_to_benchmark:
pipeline = pipeline_cls.from_pretrained(pipeline_ckpt, adapter=adapter)
pipeline.to(device)
# Optionally set memory layout.
if use_channels_last:
pipeline.unet.to(memory_format=torch.channels_last)
if hasattr(pipeline, "controlnet"):
pipeline.controlnet.to(memory_format=torch.channels_last)
elif hasattr(pipeline, "adapter"):
pipeline.adapter.to(memory_format=torch.channels_last)
# Optional torch compilation.
if do_torch_compile:
pipeline.unet = torch.compile(
pipeline.unet, mode="reduce-overhead", fullgraph=True
)
if hasattr(pipeline, "controlnet"):
pipeline.controlnet = torch.compile(
pipeline.controlnet, mode="reduce-overhead", fullgraph=True
)
elif hasattr(pipeline, "adapter"):
pipeline.adapter = torch.compile(
pipeline.adapter, mode="reduce-overhead", fullgraph=True
)
return pipeline
def generate(
pipeline_to_benchmark: str,
num_images_per_prompt: int = 1,
use_channels_last: bool = False,
do_torch_compile: bool = False,
):
print("Start...")
print("Torch version", torch.__version__)
print("Torch CUDA version", torch.version.cuda)
pipeline = load_pipeline(
pipeline_to_benchmark=pipeline_to_benchmark,
use_channels_last=use_channels_last,
do_torch_compile=do_torch_compile,
)
for _ in range(3):
prompt = 77 * "a"
num_inference_steps = 20
start_time = time.time()
_ = pipeline(
prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_steps,
).images
end_time = time.time()
print(f"For {num_inference_steps} steps", end_time - start_time)
print("Avg per step", (end_time - start_time) / num_inference_steps)
with gr.Blocks() as demo:
do_torch_compile = gr.Checkbox(label="Enable torch.compile()?")
use_channels_last = gr.Checkbox(label="Use `channels_last` memory layout?")
pipeline_to_benchmark = (
gr.Dropdown(
list(pipeline_mapping.keys()),
value=["Stable Diffusion V1.5"],
multiselect=False,
label="Pipeline to benchmark",
),
)
batch_size = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=16,
step=1,
value=1,
)
btn = gr.Button("Benchmark!").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
btn.click(
fn=generate,
inputs=[pipeline_to_benchmark, batch_size, use_channels_last, do_torch_compile],
)
demo.launch()
|