Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,31 +8,23 @@ import logging
|
|
8 |
import warnings
|
9 |
import time
|
10 |
|
11 |
-
# Menyembunyikan pesan peringatan dari urllib3
|
12 |
logging.getLogger("urllib3").setLevel(logging.CRITICAL)
|
13 |
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")
|
14 |
|
15 |
-
# Inisialisasi geolocator untuk geocoding
|
16 |
geolocator = Nominatim(user_agent="job_recommendation_system")
|
17 |
|
18 |
-
# Fungsi untuk mendapatkan koordinat lokasi
|
19 |
def get_coordinates(location):
|
20 |
geolocator = Nominatim(user_agent="job_recommendation_system")
|
|
|
21 |
|
22 |
-
# Format lokasi
|
23 |
-
location = location.replace("-", ",") # Ganti tanda hubung dengan koma
|
24 |
-
|
25 |
-
# Tangani nama lokasi dengan "Metropolitan Area" atau "Region"
|
26 |
if "Metropolitan Area" in location or "Region" in location:
|
27 |
city_name = location.split(" ")[0] # Ambil nama kota utama
|
28 |
location = city_name
|
29 |
|
30 |
-
# Coba cari lokasi
|
31 |
location_obj = geolocator.geocode(location)
|
32 |
if location_obj:
|
33 |
return location_obj.latitude, location_obj.longitude
|
34 |
|
35 |
-
# Jika tidak ditemukan, coba nama kota atau negara
|
36 |
print(f"Koordinat untuk {location} tidak ditemukan. Mencoba alternatif.")
|
37 |
city_or_area = location.split(',')[0].strip() # Ambil nama kota pertama
|
38 |
location_obj = geolocator.geocode(city_or_area)
|
@@ -41,7 +33,6 @@ def get_coordinates(location):
|
|
41 |
country = location.split(',')[-1].strip() # Ambil nama negara terakhir
|
42 |
location_obj = geolocator.geocode(country)
|
43 |
|
44 |
-
# Jika tetap gagal, coba retry
|
45 |
retry_count = 0
|
46 |
while not location_obj and retry_count < 5:
|
47 |
print(f"Mencoba ulang untuk lokasi {location}...")
|
@@ -49,54 +40,44 @@ def get_coordinates(location):
|
|
49 |
location_obj = geolocator.geocode(location)
|
50 |
retry_count += 1
|
51 |
|
52 |
-
# Return koordinat jika ditemukan
|
53 |
if location_obj:
|
54 |
return location_obj.latitude, location_obj.longitude
|
55 |
else:
|
56 |
print(f"Koordinat untuk {location} atau alternatif tidak dapat ditemukan.")
|
57 |
return None, None
|
58 |
|
59 |
-
# Load the dataset
|
60 |
sample_data = pd.read_csv('job_data_with_coordinates.csv')
|
61 |
|
62 |
-
# 1. Vektorisasi skill menggunakan CountVectorizer
|
63 |
def vectorize_skills(skills, all_skills):
|
64 |
vectorizer = CountVectorizer()
|
65 |
vectorizer.fit(all_skills)
|
66 |
skills_vector = vectorizer.transform(skills)
|
67 |
return skills_vector
|
68 |
|
69 |
-
# 2. Menghitung Cosine Similarity
|
70 |
def calculate_cosine_similarity(user_skills_tfidf, job_skills_tfidf):
|
71 |
return cosine_similarity(user_skills_tfidf, job_skills_tfidf)
|
72 |
|
73 |
-
# 3. Menghitung jarak lokasi
|
74 |
def calculate_distance(job_coords, user_coords):
|
75 |
try:
|
76 |
return geodesic(job_coords, user_coords).km
|
77 |
except ValueError: # Menangani kasus koordinat yang tidak valid
|
78 |
return float('inf')
|
79 |
|
80 |
-
#
|
81 |
def prepare_and_recommend(df, user_skills, user_location):
|
82 |
-
# 1. Memastikan dataset memiliki koordinat
|
83 |
if 'latitude' not in df or 'longitude' not in df:
|
84 |
raise ValueError("Dataset harus memiliki kolom latitude dan longitude")
|
85 |
|
86 |
-
# 2. Vektorisasi skill
|
87 |
all_skills = df['skills'].tolist() # Semua skill dari dataset
|
88 |
user_skills_vtr = vectorize_skills([user_skills], all_skills) # Skill user
|
89 |
job_skills_vtr = vectorize_skills(df['skills'], all_skills) # Skill pekerjaan di dataset
|
90 |
|
91 |
-
# 3. Menghitung Cosine Similarity antara user dan pekerjaan
|
92 |
cosine_similarities = calculate_cosine_similarity(user_skills_vtr, job_skills_vtr)
|
93 |
df['cosine_similarity'] = cosine_similarities[0]
|
94 |
|
95 |
-
# 4. Menghitung jarak antara lokasi pekerjaan dan lokasi user
|
96 |
user_coords = get_coordinates(user_location) # Dapatkan koordinat user
|
97 |
distances = []
|
98 |
for _, row in df.iterrows():
|
99 |
-
# Pengecekan apakah koordinat pekerjaan valid
|
100 |
if pd.notna(row['latitude']) and pd.notna(row['longitude']) and row['latitude'] != 0 and row['longitude'] != 0:
|
101 |
job_coords = (row['latitude'], row['longitude'])
|
102 |
distance = calculate_distance(job_coords, user_coords)
|
@@ -105,11 +86,8 @@ def prepare_and_recommend(df, user_skills, user_location):
|
|
105 |
distances.append(float('inf')) # Jika koordinat tidak valid, jarak tak terhingga
|
106 |
|
107 |
df['distance (km)'] = distances
|
108 |
-
|
109 |
-
# 5. Menghitung skor akhir berdasarkan Cosine Similarity dan Jarak
|
110 |
df['final score'] = df['cosine_similarity'] / (df['distance (km)'] + 1)
|
111 |
|
112 |
-
# 6. Mengurutkan pekerjaan dan memilih 5 teratas berdasarkan skor akhir
|
113 |
top_jobs = df.sort_values(by='final score', ascending=False).head(5)
|
114 |
|
115 |
return top_jobs[['job_link', 'title', 'company', 'location', 'distance (km)', 'final score']]
|
|
|
8 |
import warnings
|
9 |
import time
|
10 |
|
|
|
11 |
logging.getLogger("urllib3").setLevel(logging.CRITICAL)
|
12 |
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")
|
13 |
|
|
|
14 |
geolocator = Nominatim(user_agent="job_recommendation_system")
|
15 |
|
|
|
16 |
def get_coordinates(location):
|
17 |
geolocator = Nominatim(user_agent="job_recommendation_system")
|
18 |
+
location = location.replace("-", ",")
|
19 |
|
|
|
|
|
|
|
|
|
20 |
if "Metropolitan Area" in location or "Region" in location:
|
21 |
city_name = location.split(" ")[0] # Ambil nama kota utama
|
22 |
location = city_name
|
23 |
|
|
|
24 |
location_obj = geolocator.geocode(location)
|
25 |
if location_obj:
|
26 |
return location_obj.latitude, location_obj.longitude
|
27 |
|
|
|
28 |
print(f"Koordinat untuk {location} tidak ditemukan. Mencoba alternatif.")
|
29 |
city_or_area = location.split(',')[0].strip() # Ambil nama kota pertama
|
30 |
location_obj = geolocator.geocode(city_or_area)
|
|
|
33 |
country = location.split(',')[-1].strip() # Ambil nama negara terakhir
|
34 |
location_obj = geolocator.geocode(country)
|
35 |
|
|
|
36 |
retry_count = 0
|
37 |
while not location_obj and retry_count < 5:
|
38 |
print(f"Mencoba ulang untuk lokasi {location}...")
|
|
|
40 |
location_obj = geolocator.geocode(location)
|
41 |
retry_count += 1
|
42 |
|
|
|
43 |
if location_obj:
|
44 |
return location_obj.latitude, location_obj.longitude
|
45 |
else:
|
46 |
print(f"Koordinat untuk {location} atau alternatif tidak dapat ditemukan.")
|
47 |
return None, None
|
48 |
|
|
|
49 |
sample_data = pd.read_csv('job_data_with_coordinates.csv')
|
50 |
|
|
|
51 |
def vectorize_skills(skills, all_skills):
|
52 |
vectorizer = CountVectorizer()
|
53 |
vectorizer.fit(all_skills)
|
54 |
skills_vector = vectorizer.transform(skills)
|
55 |
return skills_vector
|
56 |
|
|
|
57 |
def calculate_cosine_similarity(user_skills_tfidf, job_skills_tfidf):
|
58 |
return cosine_similarity(user_skills_tfidf, job_skills_tfidf)
|
59 |
|
|
|
60 |
def calculate_distance(job_coords, user_coords):
|
61 |
try:
|
62 |
return geodesic(job_coords, user_coords).km
|
63 |
except ValueError: # Menangani kasus koordinat yang tidak valid
|
64 |
return float('inf')
|
65 |
|
66 |
+
# Fungsi utama untuk persiapan dan rekomendasi pekerjaan
|
67 |
def prepare_and_recommend(df, user_skills, user_location):
|
|
|
68 |
if 'latitude' not in df or 'longitude' not in df:
|
69 |
raise ValueError("Dataset harus memiliki kolom latitude dan longitude")
|
70 |
|
|
|
71 |
all_skills = df['skills'].tolist() # Semua skill dari dataset
|
72 |
user_skills_vtr = vectorize_skills([user_skills], all_skills) # Skill user
|
73 |
job_skills_vtr = vectorize_skills(df['skills'], all_skills) # Skill pekerjaan di dataset
|
74 |
|
|
|
75 |
cosine_similarities = calculate_cosine_similarity(user_skills_vtr, job_skills_vtr)
|
76 |
df['cosine_similarity'] = cosine_similarities[0]
|
77 |
|
|
|
78 |
user_coords = get_coordinates(user_location) # Dapatkan koordinat user
|
79 |
distances = []
|
80 |
for _, row in df.iterrows():
|
|
|
81 |
if pd.notna(row['latitude']) and pd.notna(row['longitude']) and row['latitude'] != 0 and row['longitude'] != 0:
|
82 |
job_coords = (row['latitude'], row['longitude'])
|
83 |
distance = calculate_distance(job_coords, user_coords)
|
|
|
86 |
distances.append(float('inf')) # Jika koordinat tidak valid, jarak tak terhingga
|
87 |
|
88 |
df['distance (km)'] = distances
|
|
|
|
|
89 |
df['final score'] = df['cosine_similarity'] / (df['distance (km)'] + 1)
|
90 |
|
|
|
91 |
top_jobs = df.sort_values(by='final score', ascending=False).head(5)
|
92 |
|
93 |
return top_jobs[['job_link', 'title', 'company', 'location', 'distance (km)', 'final score']]
|