Spaces:
Sleeping
Sleeping
delete radius
Browse files
app.py
CHANGED
@@ -73,7 +73,7 @@ def normalize_distance(distances):
|
|
73 |
return normalized
|
74 |
|
75 |
# Menambahkan radius sebagai parameter
|
76 |
-
def prepare_and_recommend(df, user_skills, user_location
|
77 |
# 1. Memastikan dataset memiliki koordinat
|
78 |
if 'latitude' not in df or 'longitude' not in df:
|
79 |
raise ValueError("Dataset harus memiliki kolom latitude dan longitude")
|
@@ -100,7 +100,7 @@ def prepare_and_recommend(df, user_skills, user_location, radius_km):
|
|
100 |
df['distance (km)'] = distances
|
101 |
|
102 |
# 5. Filter pekerjaan berdasarkan radius
|
103 |
-
df = df[df['distance (km)']
|
104 |
|
105 |
# 6. Normalisasi jarak
|
106 |
if not df.empty:
|
@@ -118,16 +118,15 @@ def prepare_and_recommend(df, user_skills, user_location, radius_km):
|
|
118 |
return top_jobs[['job_link', 'title', 'company', 'location', 'distance (km)', 'final score']]
|
119 |
|
120 |
# Streamlit app
|
121 |
-
st.title('Job
|
122 |
-
st.write('
|
123 |
|
124 |
user_skills = st.text_input('Enter your skills (comma-separated):')
|
125 |
-
user_location = st.text_input('
|
126 |
-
radius_km = st.number_input('Enter your preferred radius (in km):', min_value=1, value=10)
|
127 |
|
128 |
if st.button('Get Recommendations'):
|
129 |
if user_skills and user_location:
|
130 |
-
recommended_jobs = prepare_and_recommend(sample_data, user_skills, user_location
|
131 |
if recommended_jobs.empty:
|
132 |
st.warning('Tidak ditemukan pekerjaan yang sesuai dengan keterampilan dan lokasi Anda.')
|
133 |
elif recommended_jobs['final score'].max() < 0.02:
|
|
|
73 |
return normalized
|
74 |
|
75 |
# Menambahkan radius sebagai parameter
|
76 |
+
def prepare_and_recommend(df, user_skills, user_location):
|
77 |
# 1. Memastikan dataset memiliki koordinat
|
78 |
if 'latitude' not in df or 'longitude' not in df:
|
79 |
raise ValueError("Dataset harus memiliki kolom latitude dan longitude")
|
|
|
100 |
df['distance (km)'] = distances
|
101 |
|
102 |
# 5. Filter pekerjaan berdasarkan radius
|
103 |
+
df = df[df['distance (km)']]
|
104 |
|
105 |
# 6. Normalisasi jarak
|
106 |
if not df.empty:
|
|
|
118 |
return top_jobs[['job_link', 'title', 'company', 'location', 'distance (km)', 'final score']]
|
119 |
|
120 |
# Streamlit app
|
121 |
+
st.title('Job Findr')
|
122 |
+
st.write('Find your job with ease.')
|
123 |
|
124 |
user_skills = st.text_input('Enter your skills (comma-separated):')
|
125 |
+
user_location = st.text_input('Job location:')
|
|
|
126 |
|
127 |
if st.button('Get Recommendations'):
|
128 |
if user_skills and user_location:
|
129 |
+
recommended_jobs = prepare_and_recommend(sample_data, user_skills, user_location)
|
130 |
if recommended_jobs.empty:
|
131 |
st.warning('Tidak ditemukan pekerjaan yang sesuai dengan keterampilan dan lokasi Anda.')
|
132 |
elif recommended_jobs['final score'].max() < 0.02:
|