import gradio as gr import tensorflow as tf import numpy as np from PIL import Image import google.generativeai as genai import os # Load TensorFlow model model_path = 'model' model = tf.saved_model.load(model_path) # Set up Gemini API api_key = os.getenv("GEMINI_API_KEY") genai.configure(api_key=api_key) # Labels for classification labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal'] def get_disease_detail(disease_name): prompt = ( f"Diagnosis: {disease_name}\n\n" "What is it?\n(Description about the disease)\n\n" "What causes it?\n(Explain what causes the disease)\n\n" "Suggestions\n(Suggestion to user)\n\n" "Reminder: Always seek professional help, such as a doctor." ) response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt) return response.text.strip() def safe_extract_section(text, start_keyword, end_keyword): """ Safely extract sections from the Gemini response based on start and end keywords.""" if start_keyword in text and end_keyword in text: return text.split(start_keyword)[1].split(end_keyword)[0].strip() elif start_keyword in text: return text.split(start_keyword)[1].strip() else: return "Information not available." def predict_image(image): # Preprocess the image image_resized = image.resize((224, 224)) image_array = np.array(image_resized).astype(np.float32) / 255.0 image_array = np.expand_dims(image_array, axis=0) # Run prediction predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] top_index = np.argmax(predictions.numpy(), axis=1)[0] top_label = labels[top_index] top_probability = predictions.numpy()[0][top_index] * 100 # Convert to percentage # Get explanation from Gemini API explanation = get_disease_detail(top_label) # Extract relevant sections from the explanation diagnosis_section = f"**Diagnosis:** {top_label}" what_is_it = safe_extract_section(explanation, "What is it?", "What causes it?") causes = safe_extract_section(explanation, "What causes it?", "Suggestions") suggestions = safe_extract_section(explanation, "Suggestions", "Reminder") reminder = "Always seek professional help, such as a doctor." # Format explanation formatted_explanation = ( f"{diagnosis_section}\n\n" f"**What is it?** {what_is_it}\n\n" f"**What causes it?** {causes}\n\n" f"**Suggestions:** {suggestions}\n\n" f"**Reminder:** {reminder}" ) # Return both the prediction and the explanation return {top_label: top_probability}, formatted_explanation # Example images example_images = [ ["exp_eye_images/0_right_h.png"], ["exp_eye_images/03fd50da928d_dr.png"], ["exp_eye_images/108_right_h.png"], ["exp_eye_images/1062_right_c.png"], ["exp_eye_images/1084_right_c.png"], ["exp_eye_images/image_1002_g.jpg"] ] # Gradio Interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=1, label="Prediction"), gr.Textbox(label="Explanation") ], examples=example_images, title="Eye Diseases Classifier", description=( "Upload an image of an eye fundus, and the model will predict it.\n\n" "**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future." ), allow_flagging="never" ) interface.launch(share=True)