File size: 3,502 Bytes
d566fee
 
 
 
a3cb4b9
ee36b3c
ba699eb
d566fee
a3cb4b9
d566fee
 
 
a3cb4b9
ee36b3c
 
 
d566fee
 
ee36b3c
8878677
 
 
 
 
 
77be94a
8878677
a27a94b
a3cb4b9
 
ba699eb
a3cb4b9
 
ee36b3c
d566fee
6704e8f
 
 
 
 
4a077d0
a3cb4b9
6704e8f
 
f132889
d566fee
6704e8f
d566fee
4a077d0
d566fee
 
 
 
23fec88
 
 
 
41dcd30
d566fee
 
ba699eb
2825722
ba699eb
a8f5c0e
a8296f6
 
 
 
2825722
 
 
d566fee
 
 
 
910566d
6704e8f
8a69f2c
6704e8f
d566fee
 
910566d
6704e8f
 
910566d
ba699eb
 
d566fee
 
fe44a5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import google.generativeai as genai 
import os
import markdown2

# Load the TensorFlow model
model_path = 'model'
model = tf.saved_model.load(model_path)

# Configure Gemini API
api_key = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=api_key)

labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']

def get_disease_detail(disease_name):
    # if disease_name == "normal":
        # prompt = (
        #     "Create a text that congratulates having healthy eyes and gives bullet point tips to keep eyes healthy."
        # )
    # else:
    prompt = (
        "You are an Ophthalmologist with over 25 years of experience, you have treated thousands of patients with various eye diseases including cataracts, diabetic retinopathy and glaucoma. The entire medical process from disease identification to patient management is second nature to you and you are used to it. Your job is to critically and comprehensively make recommendations based on the diagnosis, the recommendations contain actions that can be taken on the patient, no need to re-explain the disease. In every recommendation you must remind the patient to always see the Ophthalmologist to validate the diagnosis and recommendation.\n"
        f"The diagnosis is {disease_name}, what are your recommendations?"
        )
    try:
        response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
        return markdown2.markdown(response.text.strip())
    except Exception as e:
        return f"Error: {e}"

def predict_image(image):
    image_resized = image.resize((224, 224))
    image_array = np.array(image_resized).astype(np.float32) / 255.0
    image_array = np.expand_dims(image_array, axis=0)

    predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
    
    # Highest prediction
    top_index = np.argmax(predictions.numpy(), axis=1)[0]
    top_label = labels[top_index]
    top_probability = predictions.numpy()[0][top_index]

    explanation = get_disease_detail(top_label)

    return {top_label: top_probability}, explanation

# Example images
example_images = [
    ["exp_eye_images/0_right_h.png"],
    ["exp_eye_images/03fd50da928d_dr.png"],
    ["exp_eye_images/108_right_h.png"],
    ["exp_eye_images/1062_right_c.png"],
    ["exp_eye_images/1084_right_c.png"],
    ["exp_eye_images/image_1002_g.jpg"]
]

# Custom CSS for HTML height
css = """
.scrollable-html {
    height: 206px;
    overflow-y: auto;  
    border: 1px solid #ccc;  
    padding: 10px;  
    box-sizing: border-box;
}
"""

# Gradio Interface
interface = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Label(num_top_classes=1, label="Prediction"), 
        gr.HTML(label="Explanation", elem_classes=["scrollable-html"])
    ],
    examples=example_images,
    title="Eye Diseases Classifier",
    description=(
        "Upload an image of an eye fundus, and the model will predict it.\n\n"
        "**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future."
    ),
    allow_flagging="never",
    css=css
)

interface.launch(share=True)