import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = 'model' model = tf.saved_model.load(model_path) labels = ['butterfly', 'cats', 'cow', 'dogs', 'elephant', 'horse', 'monkey', 'sheep', 'spider', 'squirrel'] def predict_image(image): image_resized = image.resize((224, 224)) image_array = np.array(image_resized).astype(np.float32) / 255.0 image_array = np.expand_dims(image_array, axis=0) predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0'] # Top 3 classes top_3_indices = np.argsort(predictions.numpy(), axis=1)[0][-3:][::-1] top_3_labels = [labels[i] for i in top_3_indices] top_3_probabilities = [predictions.numpy()[0][i] * 100 for i in top_3_indices] output_string = "\n".join([f"{label}: {probability:.2f}%" for label, probability in zip(top_3_labels, top_3_probabilities)]) return image_resized, output_string # Gradio Interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=[gr.Image(type="pil"), "text"], title="Animal Classifier", description="Upload an image of an animal, and the model will predict it." ) interface.launch(share=True)