Spaces:
Running
Running
File size: 1,562 Bytes
43f196e 639cd54 43f196e 3dd911a 1c2a810 a665b6d 1c2a810 a665b6d 1c2a810 823e3a4 1c2a810 43f196e 0a22c12 1c2a810 279f8b2 1c2a810 569f7e7 43f196e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model_path = 'model'
model = tf.saved_model.load(model_path)
labels = ['butterfly', 'cats', 'cow', 'dogs', 'elephant',
'horse', 'monkey', 'sheep', 'spider', 'squirrel']
def predict_image(image):
image_resized = image.resize((224, 224))
image_array = np.array(image_resized).astype(np.float32) / 255.0
image_array = np.expand_dims(image_array, axis=0)
predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
# Highest prediction
top_index = np.argmax(predictions.numpy(), axis=1)[0]
top_label = labels[top_index]
top_probability = predictions.numpy()[0][top_index]
return {top_label:top_probability}
# Example images
example_images = [
["exp_img/cat.jpg"],
["exp_img/cow.jpg"],
["exp_img/elephant.jpg"],
["exp_img/sheep.jpg"],
["exp_img/spider.jpg"],
["exp_img/squirrel.jpg"]
]
# Gradio Interface
interface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=1, label="Prediction"),
examples=example_images,
title="Animals Classifier",
description="Upload an image of an animal, and the model will predict it.\n\n**Disclaimer:** This model is trained only on specific animal classes (butterfly, cats, cow, dogs, elephant, horse, monkey, sheep, spider, squirrel) and may not accurately predict animals outside these classes.",
allow_flagging="never"
)
interface.launch(share=True)
|