Spaces:
Sleeping
Sleeping
Commit
·
fcb8bb5
1
Parent(s):
0e19682
Update model.py
Browse files
model.py
CHANGED
@@ -14,15 +14,6 @@ class Model(LabelStudioMLBase):
|
|
14 |
image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
|
15 |
model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")
|
16 |
|
17 |
-
def __init__(self, **kwargs):
|
18 |
-
# don't forget to call base class constructor
|
19 |
-
super(Model, self).__init__(**kwargs)
|
20 |
-
|
21 |
-
# you can preinitialize variables with keys needed to extract info from tasks and annotations and form predictions
|
22 |
-
self.model = model
|
23 |
-
self.tokenizer = image_processor
|
24 |
-
self.id2label = model.config.id2label
|
25 |
-
|
26 |
def predict(self, tasks, **kwargs):
|
27 |
""" This is where inference happens: model returns
|
28 |
the list of predictions based on input list of tasks
|
@@ -36,10 +27,10 @@ class Model(LabelStudioMLBase):
|
|
36 |
original_width, original_height = image.size
|
37 |
with torch.no_grad():
|
38 |
|
39 |
-
inputs =
|
40 |
-
outputs =
|
41 |
target_sizes = torch.tensor([image.size[::-1]])
|
42 |
-
results =
|
43 |
|
44 |
result_list = []
|
45 |
for score, label, box in zip(results['scores'], results['labels'], results['boxes']):
|
|
|
14 |
image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
|
15 |
model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def predict(self, tasks, **kwargs):
|
18 |
""" This is where inference happens: model returns
|
19 |
the list of predictions based on input list of tasks
|
|
|
27 |
original_width, original_height = image.size
|
28 |
with torch.no_grad():
|
29 |
|
30 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
31 |
+
outputs = model(**inputs)
|
32 |
target_sizes = torch.tensor([image.size[::-1]])
|
33 |
+
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
|
34 |
|
35 |
result_list = []
|
36 |
for score, label, box in zip(results['scores'], results['labels'], results['boxes']):
|