diegokauer commited on
Commit
aa96f98
·
1 Parent(s): af6c368

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +9 -13
model.py CHANGED
@@ -35,21 +35,17 @@ def generate_download_signed_url_v4(blob_name):
35
  # Allow GET requests using this URL.
36
  method="GET",
37
  )
38
-
39
- # print("Generated GET signed URL:")
40
- # print(url)
41
- print("You can use this URL with any user agent, for example:")
42
- print(f"curl '{url}'")
43
  return url
44
 
45
 
46
  class Model(LabelStudioMLBase):
47
-
48
- image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
49
- model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")
50
- # pass
51
  os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
52
- print(get_credentials())
 
 
 
 
53
 
54
  def predict(self, tasks, **kwargs):
55
  """ This is where inference happens: model returns
@@ -68,10 +64,10 @@ class Model(LabelStudioMLBase):
68
  original_width, original_height = image.size
69
  with torch.no_grad():
70
 
71
- inputs = image_processor(images=image, return_tensors="pt")
72
- outputs = model(**inputs)
73
  target_sizes = torch.tensor([image.size[::-1]])
74
- results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
75
 
76
  result_list = []
77
  for score, label, box in zip(results['scores'], results['labels'], results['boxes']):
 
35
  # Allow GET requests using this URL.
36
  method="GET",
37
  )
 
 
 
 
 
38
  return url
39
 
40
 
41
  class Model(LabelStudioMLBase):
42
+
 
 
 
43
  os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
44
+
45
+ def __init__(self):
46
+
47
+ self.image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
48
+ self.model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")
49
 
50
  def predict(self, tasks, **kwargs):
51
  """ This is where inference happens: model returns
 
64
  original_width, original_height = image.size
65
  with torch.no_grad():
66
 
67
+ inputs = self.image_processor(images=image, return_tensors="pt")
68
+ outputs = self.model(**inputs)
69
  target_sizes = torch.tensor([image.size[::-1]])
70
+ results = self.image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
71
 
72
  result_list = []
73
  for score, label, box in zip(results['scores'], results['labels'], results['boxes']):