Spaces:
Runtime error
Runtime error
File size: 10,030 Bytes
f0e13d9 4c9a6f0 036dfc6 4c9a6f0 11c2ff9 e11c667 f0e13d9 e11c667 f0e13d9 11c2ff9 d110c8e 11c2ff9 d110c8e 11c2ff9 d110c8e 11c2ff9 e11c667 f0e13d9 e11c667 11c2ff9 e11c667 11c2ff9 e11c667 f0e13d9 4c9a6f0 036dfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
import os
import uuid
from datetime import datetime
# Model paths
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
device = "cuda"
# Initialize the noise scheduler
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# Load models
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae
).to(device)
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
# Initialize FaceAnalysis
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
cv2.setNumThreads(1)
STYLE_PRESETS = [
{
"title": "Mona Lisa",
"prompt": "A mesmerizing portrait in the style of Leonardo da Vinci's Mona Lisa, renaissance oil painting, soft sfumato technique, mysterious smile, Florentine background, museum quality, masterpiece",
"preview": "π¨"
},
{
"title": "Iron Hero",
"prompt": "Hyper realistic portrait as a high-tech superhero, wearing advanced metallic suit, arc reactor glow, inside high-tech lab, dramatic lighting, cinematic composition",
"preview": "π¦Ύ"
},
{
"title": "Ancient Egyptian",
"prompt": "Portrait as an ancient Egyptian pharaoh, wearing golden headdress and royal regalia, hieroglyphics background, dramatic desert lighting, archaeological discovery style",
"preview": "π"
},
{
"title": "Sherlock Holmes",
"prompt": "Victorian era detective portrait, wearing deerstalker hat and cape, holding magnifying glass, foggy London background, mysterious atmosphere, detailed illustration",
"preview": "π"
},
{
"title": "Star Wars Jedi",
"prompt": "Epic portrait as a Jedi Master, wearing traditional robes, holding lightsaber, temple background, force aura effect, cinematic lighting, movie poster quality",
"preview": "βοΈ"
},
{
"title": "Van Gogh Style",
"prompt": "Self-portrait in the style of Vincent van Gogh, bold brushstrokes, vibrant colors, post-impressionist style, emotional intensity, starry background",
"preview": "π¨"
},
{
"title": "Greek God",
"prompt": "Mythological portrait as an Olympian deity, wearing flowing robes, golden laurel wreath, Mount Olympus background, godly aura, classical Greek art style",
"preview": "β‘"
},
{
"title": "Medieval Knight",
"prompt": "Noble knight portrait, wearing ornate plate armor, holding sword and shield, castle background, heraldic designs, medieval manuscript style",
"preview": "π‘οΈ"
},
{
"title": "Matrix Hero",
"prompt": "Cyberpunk portrait in digital reality, wearing black trench coat and sunglasses, green code rain effect, dystopian atmosphere, cinematic style",
"preview": "πΆοΈ"
},
{
"title": "Pirate Captain",
"prompt": "Swashbuckling pirate captain portrait, wearing tricorn hat and colonial coat, ship's deck background, dramatic sea storm, golden age of piracy style",
"preview": "π΄ββ οΈ"
}
]
css = '''
#component-0 {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.container {
background-color: #ffffff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.header {
text-align: center;
margin-bottom: 2rem;
background: linear-gradient(90deg, #2C3E50, #3498DB);
padding: 2rem;
border-radius: 10px;
color: white;
}
.preset-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
gap: 1rem;
margin: 1rem 0;
}
.preset-card {
background: #f8f9fa;
padding: 1rem;
border-radius: 8px;
cursor: pointer;
transition: all 0.3s ease;
border: 1px solid #e9ecef;
}
.preset-card:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);
background: #f1f3f5;
}
.preset-emoji {
font-size: 2rem;
margin-bottom: 0.5rem;
}
.input-container {
background: #f8f9fa;
padding: 1.5rem;
border-radius: 8px;
margin-bottom: 1rem;
}
footer {display: none !important}
'''
@spaces.GPU(enable_queue=True)
def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)):
if not prompt:
prompt = f"Professional portrait of a {gender.lower()}"
# Add specific keywords to ensure single person
prompt = f"{prompt}, single person, solo portrait, one person only, centered composition"
# Add negative prompt to prevent multiple people
negative_prompt = "multiple people, group photo, crowd, double portrait, triple portrait, many faces, multiple faces, two faces, three faces, multiple views, collage, photo grid"
faceid_all_embeds = []
first_iteration = True
preserve_face_structure = True
face_strength = 2.1
likeness_strength = 0.7
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
if first_iteration and preserve_face_structure:
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
first_iteration = False
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
image = ip_model_plus.generate(
prompt=prompt,
negative_prompt=negative_prompt,
faceid_embeds=average_embedding,
scale=likeness_strength,
face_image=face_image,
shortcut=True,
s_scale=face_strength,
width=512,
height=768, # Adjusted for better single-person portrait composition
num_inference_steps=100,
guidance_scale=7.5 # Added to enforce prompt adherence
)
return image
def create_preset_click_handler(idx, prompt_input):
def handler():
return {"value": STYLE_PRESETS[idx]["prompt"]}
return handler
with gr.Blocks(css=css) as demo:
with gr.Column(elem_classes="container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# β¨ Magic Face")
gr.Markdown("### Transform Your Face Into Legendary Characters!")
with gr.Row():
with gr.Column(scale=1):
images_input = gr.Files(
label="πΈ Upload Your Face Photos",
file_types=["image"],
elem_classes="input-container"
)
gender_input = gr.Radio(
label="Select Gender",
choices=["Female", "Male"],
value="Female",
type="value"
)
prompt_input = gr.Textbox(
label="π¨ Custom Prompt",
placeholder="Describe your desired transformation in detail...",
lines=3
)
with gr.Column(elem_classes="preset-container"):
gr.Markdown("### π Magic Transformations")
preset_grid = []
for idx, preset in enumerate(STYLE_PRESETS):
preset_button = gr.Button(
f"{preset['preview']} {preset['title']}",
elem_classes="preset-card"
)
preset_button.click(
fn=create_preset_click_handler(idx, prompt_input),
inputs=[],
outputs=[prompt_input]
)
preset_grid.append(preset_button)
generate_button = gr.Button("π Generate Magic", variant="primary")
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Magic Gallery",
elem_classes="output-gallery",
columns=2
)
with gr.Accordion("π Quick Guide", open=False):
gr.Markdown("""
### How to Use Magic Face
1. Upload one or more face photos
2. Select your gender
3. Choose a magical transformation or write your own prompt
4. Click 'Generate Magic'
### Pro Tips
- Upload multiple angles of your face for better results
- Try combining different historical or fictional characters
- Feel free to modify the preset prompts
- Click on generated images to view them in full size
""")
generate_button.click(
fn=generate_image,
inputs=[images_input, gender_input, prompt_input],
outputs=output_gallery
)
demo.queue()
demo.launch() |