Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from sklearn.linear_model import LinearRegression
|
| 5 |
+
from datetime import timedelta
|
| 6 |
+
|
| 7 |
+
def plot_and_predict(zip, prediction_days):
|
| 8 |
+
# Read and process the real estate data from Zillow
|
| 9 |
+
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
|
| 10 |
+
df = df[df['RegionName'] == int(zip)]
|
| 11 |
+
df = df.loc[:, '2000-01-31':]
|
| 12 |
+
df = df.T.reset_index()
|
| 13 |
+
df.columns = ['Date', 'Price']
|
| 14 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 15 |
+
|
| 16 |
+
# Train linear regression model
|
| 17 |
+
df['Timestamp'] = (df['Date'] - pd.Timestamp("1970-01-01")) // pd.Timedelta('1D')
|
| 18 |
+
X = df['Timestamp'].values.reshape(-1, 1)
|
| 19 |
+
y = df['Price'].values
|
| 20 |
+
model = LinearRegression()
|
| 21 |
+
model.fit(X, y)
|
| 22 |
+
|
| 23 |
+
# Predict future prices
|
| 24 |
+
last_timestamp = df['Timestamp'].iloc[-1]
|
| 25 |
+
future_timestamps = [last_timestamp + i for i in range(1, prediction_days + 1)]
|
| 26 |
+
predicted_prices = model.predict(pd.np.array(future_timestamps).reshape(-1, 1))
|
| 27 |
+
|
| 28 |
+
# Prepare data for plotting
|
| 29 |
+
historical_prices_trace = go.Scatter(
|
| 30 |
+
x=df['Date'],
|
| 31 |
+
y=df['Price'],
|
| 32 |
+
mode="lines",
|
| 33 |
+
name="Historical Prices"
|
| 34 |
+
)
|
| 35 |
+
future_dates = [df['Date'].iloc[-1] + timedelta(days=i) for i in range(1, prediction_days + 1)]
|
| 36 |
+
predicted_prices_trace = go.Scatter(
|
| 37 |
+
x=future_dates,
|
| 38 |
+
y=predicted_prices,
|
| 39 |
+
mode="lines",
|
| 40 |
+
name="Predicted Prices"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Plot data
|
| 44 |
+
fig = go.Figure()
|
| 45 |
+
fig.add_trace(historical_prices_trace)
|
| 46 |
+
fig.add_trace(predicted_prices_trace)
|
| 47 |
+
fig.update_layout(
|
| 48 |
+
title=f"Real Estate Price Prediction for Zip Code {zip}",
|
| 49 |
+
xaxis_title="Date",
|
| 50 |
+
yaxis_title="Price",
|
| 51 |
+
legend_title_text="Data"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
return fig
|
| 55 |
+
|
| 56 |
+
# Gradio interface
|
| 57 |
+
interface = gr.Interface(
|
| 58 |
+
fn=plot_and_predict,
|
| 59 |
+
inputs=[
|
| 60 |
+
gr.Textbox(label="ZIP Code"),
|
| 61 |
+
gr.Slider(minimum=1, maximum=365, step=1, label="Prediction Days"),
|
| 62 |
+
],
|
| 63 |
+
outputs="plot"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the app
|
| 67 |
+
interface.launch(debug=True)
|