Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the models using pipeline | |
audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2") | |
image_model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection") | |
# Define the prediction function | |
def predict(data, model_choice): | |
print("Data received:", data) # Debugging statement | |
try: | |
if model_choice == "Audio Deepfake Detection": | |
result = audio_model(data) | |
elif model_choice == "Image Deepfake Detection": | |
result = image_model(data) | |
else: | |
return {"error": "Invalid model choice"} | |
print("Raw prediction result:", result) # Debugging statement | |
# Convert the result to the expected format | |
output = {item['label']: item['score'] for item in result} | |
print("Formatted prediction result:", output) # Debugging statement | |
return output | |
except Exception as e: | |
print("Error during prediction:", e) # Debugging statement | |
return {"error": str(e)} | |
# Define the interface based on the selected model | |
def update_interface(model_choice): | |
if model_choice == "Audio Deepfake Detection": | |
return gr.Audio(type="filepath"), gr.Label() | |
elif model_choice == "Image Deepfake Detection": | |
return gr.Image(type="filepath"), gr.Label() | |
else: | |
return None, None | |
# Create the Gradio interface | |
with gr.Blocks() as iface: | |
model_choice = gr.Radio(choices=["Audio Deepfake Detection", "Image Deepfake Detection"], label="Select Model", value="Audio Deepfake Detection") | |
input_component, output_component = update_interface(model_choice.value) | |
def update_inputs(model_choice): | |
input_component, output_component = update_interface(model_choice) | |
input_placeholder.update(visible=False) | |
output_placeholder.update(visible=False) | |
input_placeholder.update(visible=True, component=input_component) | |
output_placeholder.update(visible=True, component=output_component) | |
input_placeholder = gr.Placeholder(gr.Component, visible=True) | |
output_placeholder = gr.Placeholder(gr.Component, visible=True) | |
model_choice.change(fn=update_inputs, inputs=model_choice, outputs=[input_placeholder, output_placeholder]) | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=predict, inputs=[input_placeholder, model_choice], outputs=output_placeholder) | |
iface.launch() | |