dgoot commited on
Commit
56be023
·
1 Parent(s): 4171748

Preloaded model and improved UI

Browse files
Files changed (1) hide show
  1. app.py +125 -70
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import gradio as gr
2
  import spaces
3
  import torch
@@ -5,7 +7,7 @@ from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2Pix
5
  from loguru import logger
6
  from PIL import Image
7
 
8
- models = [
9
  "stabilityai/sdxl-turbo",
10
  "stabilityai/stable-diffusion-3-medium-diffusers",
11
  "stabilityai/stable-diffusion-xl-refiner-1.0",
@@ -13,6 +15,12 @@ models = [
13
  ]
14
  DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-refiner-1.0"
15
 
 
 
 
 
 
 
16
 
17
  def load_pipeline(model):
18
  pipeline_type = (
@@ -22,96 +30,143 @@ def load_pipeline(model):
22
  )
23
 
24
  return pipeline_type.from_pretrained(
25
- model,
26
- torch_dtype=torch.float16,
27
- use_safetensors=True,
28
- variant="fp16"
29
  )
30
 
31
 
32
- load_pipeline(DEFAULT_MODEL).to("cuda")
33
- loaded_models = {DEFAULT_MODEL}
34
 
35
 
36
- def generate_image(
37
- model: str,
 
38
  prompt: str,
39
  init_image: Image.Image,
 
 
 
40
  strength: float,
41
- progress,
 
 
42
  ):
43
- logger.debug(f"Loading pipeline: {dict(model=model)}")
44
- pipe = load_pipeline(model).to("cuda")
 
 
 
 
45
 
46
  logger.debug(f"Generating image: {dict(prompt=prompt)}")
47
  additional_args = (
48
- {} if model == "timbrooks/instruct-pix2pix" else dict(strength=strength)
 
 
49
  )
50
 
51
- def progress_callback(pipe, step_index, timestep, callback_kwargs):
52
- logger.trace(
53
- f"Callback: {dict(num_timesteps=pipe.num_timesteps, step_index=step_index, timestep=timestep)}"
54
- )
55
- progress((step_index + 1, pipe.num_timesteps))
56
- return callback_kwargs
57
-
58
  images = pipe(
59
  prompt=prompt,
60
  image=init_image,
61
- callback_on_step_end=progress_callback,
 
 
 
 
62
  **additional_args,
63
  ).images
64
  return images[0]
65
 
66
 
67
- @spaces.GPU
68
- def gpu(*args, **kwargs):
69
- return generate_image(*args, **kwargs)
70
-
71
-
72
- @spaces.GPU(duration=180)
73
- def gpu_3min(*args, **kwargs):
74
- return generate_image(*args, **kwargs)
75
-
76
-
77
- @logger.catch(reraise=True)
78
- def generate(
79
- model: str,
80
- prompt: str,
81
- init_image: Image.Image,
82
- strength: float,
83
- progress=gr.Progress(),
84
- ):
85
- logger.info(
86
- f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image, strength=strength)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  )
88
 
89
- # Downscale the image
90
- init_image.thumbnail((1024, 1024))
91
-
92
- # Cache the model files for the pipeline
93
- if model not in loaded_models:
94
- logger.debug(f"Caching pipeline: {dict(model=model)}")
95
-
96
- load_pipeline(model)
97
- loaded_models.add(model)
98
-
99
- gpu_runner = gpu_3min if model == "timbrooks/instruct-pix2pix" else gpu
100
-
101
- return gpu_runner(model, prompt, init_image, strength, progress)
102
-
103
-
104
- demo = gr.Interface(
105
- fn=generate,
106
- inputs=[
107
- gr.Dropdown(
108
- label="Model", choices=models, value=DEFAULT_MODEL, allow_custom_value=True
109
- ),
110
- gr.Text(label="Prompt"),
111
- gr.Image(label="Init image", type="pil"),
112
- gr.Slider(label="Strength", minimum=0, maximum=1, value=0.3),
113
- ],
114
- outputs=[gr.Image(label="Output")],
115
- )
116
-
117
- demo.launch()
 
1
+ import os
2
+
3
  import gradio as gr
4
  import spaces
5
  import torch
 
7
  from loguru import logger
8
  from PIL import Image
9
 
10
+ SUPPORTED_MODELS = [
11
  "stabilityai/sdxl-turbo",
12
  "stabilityai/stable-diffusion-3-medium-diffusers",
13
  "stabilityai/stable-diffusion-xl-refiner-1.0",
 
15
  ]
16
  DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-refiner-1.0"
17
 
18
+ MAX_IMAGE_SIZE = 1024
19
+
20
+
21
+ model = os.environ.get("MODEL_ID", DEFAULT_MODEL)
22
+ gpu_duration = int(os.environ.get("GPU_DURATION", 60))
23
+
24
 
25
  def load_pipeline(model):
26
  pipeline_type = (
 
30
  )
31
 
32
  return pipeline_type.from_pretrained(
33
+ model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
 
 
 
34
  )
35
 
36
 
37
+ pipe = load_pipeline(DEFAULT_MODEL).to("cuda")
 
38
 
39
 
40
+ @logger.catch(reraise=True)
41
+ @spaces.GPU(duration=gpu_duration)
42
+ def infer(
43
  prompt: str,
44
  init_image: Image.Image,
45
+ negative_prompt: str,
46
+ width: int,
47
+ height: int,
48
  strength: float,
49
+ num_inference_steps: int,
50
+ guidance_scale: float,
51
+ progress=gr.Progress(track_tqdm=True),
52
  ):
53
+ logger.info(
54
+ f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image)}"
55
+ )
56
+
57
+ # Downscale the image
58
+ init_image.thumbnail((1024, 1024))
59
 
60
  logger.debug(f"Generating image: {dict(prompt=prompt)}")
61
  additional_args = (
62
+ {}
63
+ if model == "timbrooks/instruct-pix2pix" or strength == 0
64
+ else dict(strength=strength)
65
  )
66
 
 
 
 
 
 
 
 
67
  images = pipe(
68
  prompt=prompt,
69
  image=init_image,
70
+ negative_prompt=negative_prompt,
71
+ width=width,
72
+ height=height,
73
+ num_inference_steps=num_inference_steps,
74
+ guidance_scale=guidance_scale,
75
  **additional_args,
76
  ).images
77
  return images[0]
78
 
79
 
80
+ css = """
81
+ #col-container {
82
+ margin: 0 auto;
83
+ max-width: 640px;
84
+ }
85
+ """
86
+
87
+ with gr.Blocks(css=css) as demo:
88
+ with gr.Column(elem_id="col-container"):
89
+ gr.Markdown("# Image-to-Image")
90
+ gr.Markdown(f"## Model: {model}")
91
+
92
+ with gr.Row():
93
+ prompt = gr.Text(
94
+ label="Prompt",
95
+ show_label=False,
96
+ max_lines=1,
97
+ placeholder="Enter your prompt",
98
+ container=False,
99
+ )
100
+
101
+ run_button = gr.Button("Run", scale=0, variant="primary")
102
+
103
+ init_image = gr.Image(label="Initial image", type="pil")
104
+
105
+ result = gr.Image(label="Result", show_label=False)
106
+
107
+ with gr.Accordion("Advanced Settings", open=False):
108
+ negative_prompt = gr.Text(
109
+ label="Negative prompt",
110
+ max_lines=1,
111
+ placeholder="Enter a negative prompt",
112
+ )
113
+
114
+ with gr.Row():
115
+ width = gr.Slider(
116
+ label="Width",
117
+ minimum=256,
118
+ maximum=MAX_IMAGE_SIZE,
119
+ step=32,
120
+ value=1024,
121
+ )
122
+
123
+ height = gr.Slider(
124
+ label="Height",
125
+ minimum=256,
126
+ maximum=MAX_IMAGE_SIZE,
127
+ step=32,
128
+ value=1024,
129
+ )
130
+
131
+ with gr.Row():
132
+ strength = gr.Slider(
133
+ label="Strength",
134
+ minimum=0.0,
135
+ maximum=1.0,
136
+ step=0.01,
137
+ value=0.0,
138
+ )
139
+
140
+ num_inference_steps = gr.Slider(
141
+ label="Number of inference steps",
142
+ minimum=1,
143
+ maximum=100,
144
+ step=1,
145
+ value=50,
146
+ )
147
+
148
+ guidance_scale = gr.Slider(
149
+ label="Guidance scale",
150
+ minimum=0.0,
151
+ maximum=100.0,
152
+ step=0.1,
153
+ value=0.0,
154
+ )
155
+ gr.on(
156
+ triggers=[run_button.click, prompt.submit],
157
+ fn=infer,
158
+ inputs=[
159
+ prompt,
160
+ init_image,
161
+ negative_prompt,
162
+ width,
163
+ height,
164
+ strength,
165
+ num_inference_steps,
166
+ guidance_scale,
167
+ ],
168
+ outputs=[result],
169
  )
170
 
171
+ if __name__ == "__main__":
172
+ demo.launch()