image-to-image / app.py
dgoot's picture
Preload default model
f9d0c71
raw
history blame
2.89 kB
import gradio as gr
import spaces
from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2PixPipeline
from loguru import logger
from PIL import Image
models = [
"stabilityai/sdxl-turbo",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"timbrooks/instruct-pix2pix",
]
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-refiner-1.0"
def load_pipeline(model):
pipeline_type = (
StableDiffusionInstructPix2PixPipeline
if model == "timbrooks/instruct-pix2pix"
else AutoPipelineForImage2Image
)
return pipeline_type.from_pretrained(model)
load_pipeline(DEFAULT_MODEL).to("cuda")
loaded_models = {DEFAULT_MODEL}
def generate_image(
model: str,
prompt: str,
init_image: Image.Image,
strength: float,
progress,
):
logger.debug(f"Loading pipeline: {dict(model=model)}")
pipe = load_pipeline(model).to("cuda")
logger.debug(f"Generating image: {dict(prompt=prompt)}")
additional_args = (
{} if model == "timbrooks/instruct-pix2pix" else dict(strength=strength)
)
def progress_callback(pipe, step_index, timestep, callback_kwargs):
logger.trace(
f"Callback: {dict(num_timesteps=pipe.num_timesteps, step_index=step_index, timestep=timestep)}"
)
progress((step_index + 1, pipe.num_timesteps))
return callback_kwargs
images = pipe(
prompt=prompt,
image=init_image,
callback_on_step_end=progress_callback,
**additional_args,
).images
return images[0]
@spaces.GPU
def gpu(*args, **kwargs):
return generate_image(*args, **kwargs)
@spaces.GPU(duration=180)
def gpu_3min(*args, **kwargs):
return generate_image(*args, **kwargs)
@logger.catch(reraise=True)
def generate(
model: str,
prompt: str,
init_image: Image.Image,
strength: float,
progress=gr.Progress(),
):
logger.info(
f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image, strength=strength)}"
)
# Downscale the image
init_image.thumbnail((1024, 1024))
# Cache the model files for the pipeline
if model not in loaded_models:
logger.debug(f"Caching pipeline: {dict(model=model)}")
load_pipeline(model)
loaded_models.add(model)
gpu_runner = gpu_3min if model == "timbrooks/instruct-pix2pix" else gpu
return gpu_runner(model, prompt, init_image, strength, progress)
demo = gr.Interface(
fn=generate,
inputs=[
gr.Dropdown(
label="Model", choices=models, value=DEFAULT_MODEL, allow_custom_value=True
),
gr.Text(label="Prompt"),
gr.Image(label="Init image", type="pil"),
gr.Slider(label="Strength", minimum=0, maximum=1, value=0.3),
],
outputs=[gr.Image(label="Output")],
)
demo.launch()