image-to-image / app.py
dgoot's picture
Set GPU duration to 3 min
ef0ba0f
raw
history blame
1.94 kB
import gradio as gr
import spaces
from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2PixPipeline
from loguru import logger
from PIL import Image
models = [
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",
"timbrooks/instruct-pix2pix",
]
@logger.catch(reraise=True)
@spaces.GPU(duration=180)
def generate(
model: str,
prompt: str,
init_image: Image.Image,
strength: float,
progress=gr.Progress(),
):
logger.info(
f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image, strength=strength)}"
)
# Downscale the image
init_image.thumbnail((1024, 1024))
def progress_callback(pipe, step_index, timestep, callback_kwargs):
logger.trace(
f"Callback: {dict(num_timesteps=pipe.num_timesteps, step_index=step_index, timestep=timestep)}"
)
progress((step_index + 1, pipe.num_timesteps))
return callback_kwargs
if model == "timbrooks/instruct-pix2pix":
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model).to("cuda")
images = pipe(
prompt=prompt,
image=init_image,
callback_on_step_end=progress_callback,
).images
else:
pipe = AutoPipelineForImage2Image.from_pretrained(model).to("cuda")
images = pipe(
prompt=prompt,
image=init_image,
strength=strength,
callback_on_step_end=progress_callback,
).images
return images[0]
demo = gr.Interface(
fn=generate,
inputs=[
gr.Dropdown(
label="Model", choices=models, value=models[0], allow_custom_value=True
),
gr.Text(label="Prompt"),
gr.Image(label="Init image", type="pil"),
gr.Slider(label="Strength", minimum=0, maximum=1, value=0.3),
],
outputs=[gr.Image(label="Output")],
)
demo.launch()