Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2PixPipeline | |
from loguru import logger | |
from PIL import Image | |
models = [ | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
"stabilityai/sdxl-turbo", | |
"timbrooks/instruct-pix2pix", | |
] | |
def generate( | |
model: str, | |
prompt: str, | |
init_image: Image.Image, | |
strength: float, | |
progress=gr.Progress(), | |
): | |
logger.info( | |
f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image, strength=strength)}" | |
) | |
# Downscale the image | |
init_image.thumbnail((1024, 1024)) | |
def progress_callback(pipe, step_index, timestep, callback_kwargs): | |
logger.trace( | |
f"Callback: {dict(num_timesteps=pipe.num_timesteps, step_index=step_index, timestep=timestep)}" | |
) | |
progress((step_index + 1, pipe.num_timesteps)) | |
return callback_kwargs | |
if model == "timbrooks/instruct-pix2pix": | |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model).to("cuda") | |
images = pipe( | |
prompt=prompt, | |
image=init_image, | |
callback_on_step_end=progress_callback, | |
).images | |
else: | |
pipe = AutoPipelineForImage2Image.from_pretrained(model).to("cuda") | |
images = pipe( | |
prompt=prompt, | |
image=init_image, | |
strength=strength, | |
callback_on_step_end=progress_callback, | |
).images | |
return images[0] | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Dropdown( | |
label="Model", choices=models, value=models[0], allow_custom_value=True | |
), | |
gr.Text(label="Prompt"), | |
gr.Image(label="Init image", type="pil"), | |
gr.Slider(label="Strength", minimum=0, maximum=1, value=0.3), | |
], | |
outputs=[gr.Image(label="Output")], | |
) | |
demo.launch() | |