File size: 2,123 Bytes
37615de
 
20d0c1e
37615de
 
 
 
 
1789e44
 
37615de
 
1789e44
37615de
 
 
ef0ba0f
37615de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef0ba0f
37615de
 
 
 
 
f5f8b8f
 
 
 
 
20d0c1e
f5f8b8f
 
20d0c1e
f5f8b8f
 
 
 
 
 
 
 
 
 
37615de
 
 
 
 
 
 
1789e44
37615de
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import spaces
from diffusers import AutoPipelineForImage2Image, StableDiffusionInstructPix2PixPipeline
from loguru import logger
from PIL import Image

models = [
    "stabilityai/sdxl-turbo",
    "stabilityai/stable-diffusion-3-medium-diffusers",
    "stabilityai/stable-diffusion-xl-refiner-1.0",
    "timbrooks/instruct-pix2pix",
]
default_model = "stabilityai/stable-diffusion-xl-refiner-1.0"


@logger.catch(reraise=True)
@spaces.GPU(duration=180)
def generate(
    model: str,
    prompt: str,
    init_image: Image.Image,
    strength: float,
    progress=gr.Progress(),
):
    logger.info(
        f"Starting image generation: {dict(model=model, prompt=prompt, image=init_image, strength=strength)}"
    )

    # Downscale the image
    init_image.thumbnail((1024, 1024))

    def progress_callback(pipe, step_index, timestep, callback_kwargs):
        logger.trace(
            f"Callback: {dict(num_timesteps=pipe.num_timesteps, step_index=step_index, timestep=timestep)}"
        )
        progress((step_index + 1, pipe.num_timesteps))
        return callback_kwargs

    pipeline_type = (
        StableDiffusionInstructPix2PixPipeline
        if model == "timbrooks/instruct-pix2pix"
        else AutoPipelineForImage2Image
    )

    logger.debug(f"Loading pipeline: {dict(model=model)}")
    pipe = pipeline_type.from_pretrained(model).to("cuda")

    logger.debug(f"Generating image: {dict(prompt=prompt)}")
    additional_args = (
        {} if model == "timbrooks/instruct-pix2pix" else dict(strength=strength)
    )
    images = pipe(
        prompt=prompt,
        image=init_image,
        callback_on_step_end=progress_callback,
        **additional_args,
    ).images
    return images[0]


demo = gr.Interface(
    fn=generate,
    inputs=[
        gr.Dropdown(
            label="Model", choices=models, value=default_model, allow_custom_value=True
        ),
        gr.Text(label="Prompt"),
        gr.Image(label="Init image", type="pil"),
        gr.Slider(label="Strength", minimum=0, maximum=1, value=0.3),
    ],
    outputs=[gr.Image(label="Output")],
)

demo.launch()