File size: 6,028 Bytes
dcf713b
 
 
 
06d38c8
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae93796
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d38c8
dcf713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d38c8
dcf713b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import shutil
from urllib.parse import urlparse

import gradio as gr
import requests
import spaces
import torch
from diffusers import AutoencoderKL, StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
    download_from_original_stable_diffusion_ckpt,
)
from loguru import logger
from PIL import Image
from slugify import slugify
from tqdm import tqdm
from tqdm.contrib.concurrent import thread_map

SUPPORTED_MODELS = [
    "https://civitai.com/models/4384/dreamshaper",
    "https://civitai.com/models/44960/mpixel",
    "https://civitai.com/models/92444/lelo-lego-lora-for-xl-and-sd15",
    "https://civitai.com/models/120298/chinese-landscape-art",
    "https://civitai.com/models/150986/blueprintify-sd-xl-10",
    "https://civitai.com/models/257749/pony-diffusion-v6-xl",
]
DEFAULT_MODEL = "https://civitai.com/models/4384/dreamshaper"

model_url = os.environ.get("MODEL_URL", DEFAULT_MODEL)
gpu_duration = int(os.environ.get("GPU_DURATION", 60))


logger.debug(f"Loading model info for: {model_url}")

model_id = int(urlparse(model_url).path.split("/")[2])
r = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
try:
    r.raise_for_status()
except requests.HTTPError as e:
    raise requests.HTTPError(
        r.text.strip(), request=e.request, response=e.response
    ) from e

model = r.json()

logger.debug(f"Model info: {model}")

model_version = model["modelVersions"][0]

assert len(model_version["files"]) <= 2
assert len({file["type"] for file in model_version["files"]}) == len(
    model_version["files"]
)
assert all(file["type"] in ["Model", "VAE"] for file in model_version["files"])
assert all(
    file["metadata"]["format"] in ["SafeTensor"] for file in model_version["files"]
)


def download(file: str, url: str):
    if os.path.exists(file):
        return

    r = requests.get(url, stream=True)
    r.raise_for_status()

    temp_file = f"/tmp/{file}"
    with tqdm(
        desc=file, total=int(r.headers["content-length"]), unit="B", unit_scale=True
    ) as pbar, open(temp_file, "wb") as f:
        for chunk in r.iter_content(chunk_size=1024 * 1024):
            f.write(chunk)
            pbar.update(len(chunk))

    shutil.move(temp_file, file)


model_name = model["name"]


def get_file_name(file_type):
    return f"{slugify(model_name)}.{slugify(file_type)}.safetensors"


for _ in thread_map(
    lambda file: download(get_file_name(file["type"]), file["downloadUrl"]),
    model_version["files"],
):
    pass


pipe_args = {}
if os.path.exists(get_file_name("VAE")):
    logger.debug(f"Loading VAE")

    pipe_args["vae"] = AutoencoderKL.from_single_file(
        get_file_name("VAE"),
        torch_dtype=torch.float16,
        use_safetensors=True,
    )


logger.debug(f"Loading pipeline")

pipe = download_from_original_stable_diffusion_ckpt(
    checkpoint_path_or_dict=get_file_name("Model"),
    from_safetensors=True,
    pipeline_class=StableDiffusionImg2ImgPipeline,
    load_safety_checker=False,
    **pipe_args,
)

pipe = pipe.to("cuda")


@logger.catch(reraise=True)
@spaces.GPU(duration=gpu_duration)
def infer(
    prompt: str,
    init_image: Image.Image,
    negative_prompt: str | None,
    strength: float,
    num_inference_steps: int,
    guidance_scale: float,
    progress=gr.Progress(track_tqdm=True),
):
    logger.info(f"Starting image generation: {dict(prompt=prompt, image=init_image)}")

    # Downscale the image
    init_image.thumbnail((1024, 1024))

    additional_args = {
        k: v
        for k, v in dict(
            strength=strength,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
        ).items()
        if v
    }

    logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")

    images = pipe(
        prompt=prompt,
        image=init_image,
        negative_prompt=negative_prompt,
        **additional_args,
    ).images
    return images[0]


css = """
@media (max-width: 1280px) {
  #images-container {
    flex-direction: column;
  }
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.Markdown("# Image-to-Image")
        gr.Markdown(f"## Model: [{model_name}]({model_url})")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        with gr.Row(elem_id="images-container"):
            init_image = gr.Image(label="Initial image", type="pil")

            result = gr.Image(label="Result")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            with gr.Row():
                strength = gr.Slider(
                    label="Strength",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=0,
                    maximum=100,
                    step=1,
                    value=0,
                )

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=100.0,
                    step=0.1,
                    value=0.0,
                )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            init_image,
            negative_prompt,
            strength,
            num_inference_steps,
            guidance_scale,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()