Apple commited on
Commit
438403f
·
0 Parent(s):

first commit

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Membrane Segmentor
3
+ emoji: 🏃
4
+ colorFrom: purple
5
+ colorTo: indigo
6
+ sdk: streamlit
7
+ sdk_version: 1.17.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # devolearn-web
13
+ devolearn models deployed on a webapp
app.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functions
2
+ import streamlit as st
3
+ import numpy as np
4
+ import pandas as pd
5
+ from PIL import Image
6
+ from pathlib import Path
7
+ import joblib
8
+
9
+ import numpy as np
10
+ import cv2
11
+ import onnxruntime as ort
12
+ import imutils
13
+ # import matplotlib.pyplot as plt
14
+ import pandas as pd
15
+ import plotly.express as px
16
+
17
+
18
+
19
+ functions.cell_membrane_segmentation()
functions.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ from PIL import Image
5
+ from pathlib import Path
6
+ import joblib
7
+
8
+ import numpy as np
9
+ import cv2
10
+ import onnxruntime as ort
11
+ import imutils
12
+ # import matplotlib.pyplot as plt
13
+ import pandas as pd
14
+ import plotly.express as px
15
+
16
+
17
+
18
+ def onnx_segment_membrane(input_image, threshold):
19
+ ort_session = ort.InferenceSession('onnx_models/membrane_segmentor.onnx')
20
+ img = Image.fromarray(np.uint8(input_image))
21
+ resized = img.resize((256, 256), Image.NEAREST)
22
+ img_unsqueeze = expand_dims_twice(resized)
23
+ onnx_outputs = ort_session.run(None, {'input': img_unsqueeze.astype('float32')})
24
+ binarized = 1.0 * (onnx_outputs[0][0][0] > threshold)
25
+
26
+ resized_ret = Image.fromarray(binarized.astype(np.uint8) ).resize((356, 256), Image.NEAREST)#.convert("L")
27
+ centroid_img = generate_centroid_image(np.array(onnx_outputs[0][0][0])) *255
28
+ resized_centroid_img = Image.fromarray(centroid_img.astype(np.uint8)).resize((356, 256), Image.NEAREST)
29
+ return(resized_ret, resized_centroid_img)
30
+
31
+
32
+ def generate_centroid_image(thresh):
33
+ thresh = cv2.blur(thresh, (5,5))
34
+ thresh = thresh.astype(np.uint8)
35
+ centroid_image = np.zeros(thresh.shape)
36
+ cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
37
+ cnts = imutils.grab_contours(cnts)
38
+ centroids = []
39
+ for c in cnts:
40
+ try:
41
+ # compute the center of the contour
42
+ M = cv2.moments(c)
43
+ cX = int(M["m10"] / M["m00"])
44
+ cY = int(M["m01"] / M["m00"])
45
+ # draw the contour and center of the shape on the image
46
+ # cv2.drawContours(centroid_image, [c], -1, (255, 255, 255), 2)
47
+ cv2.circle(centroid_image, (cX, cY), 2, (1, 1, 1), -1)
48
+ centroids.append((cX, cY))
49
+ except:
50
+ pass
51
+ return(centroid_image)
52
+
53
+
54
+
55
+ def expand_dims_twice(arr):
56
+ norm=(arr-np.min(arr))/(np.max(arr)-np.min(arr))
57
+ ret = np.expand_dims(np.expand_dims(norm, axis=0), axis=0)
58
+ return(ret)
59
+
60
+
61
+
62
+ def cell_membrane_segmentation():
63
+ selected_box2 = st.sidebar.selectbox(
64
+ 'Choose Example Input',
65
+ ('Example_1.png','Example_2.png')
66
+ )
67
+
68
+ st.title('Cell Membrane Segmentation')
69
+ instructions = """
70
+ Segment Cell Membrane from C. elegans embryo imaging data \n
71
+ Either upload your own image or select from the sidebar to get a preconfigured image.
72
+ The image you select or upload will be fed through the Deep Neural Network in real-time
73
+ and the output will be displayed to the screen.
74
+ """
75
+ st.text(instructions)
76
+ file = st.file_uploader('Upload an image or choose an example')
77
+ example_image = Image.open('./images/cell_membrane_segmentation_examples/'+selected_box2)
78
+ threshold = st.sidebar.slider("Select Threshold (Applied on model output)", 0.0, 1.0, 0.1)
79
+ col1, col2, col3 = st.beta_columns(3)
80
+
81
+ if file:
82
+ input = Image.open(file)
83
+ fig1 = px.imshow(input, binary_string=True, labels=dict(x="Input Image"))
84
+ fig1.update(layout_coloraxis_showscale=False)
85
+ fig1.update_layout(margin=dict(l=0, r=0, b=0, t=0))
86
+ col1.plotly_chart(fig1, use_container_width=True)
87
+
88
+ else:
89
+ input = example_image
90
+ fig1 = px.imshow(input, binary_string=True, labels=dict(x="Input Image"))
91
+ fig1.update(layout_coloraxis_showscale=False)
92
+ fig1.update_layout(margin=dict(l=0, r=0, b=0, t=0))
93
+ col1.plotly_chart(fig1, use_container_width=True)
94
+
95
+ pressed = st.button('Run')
96
+ if pressed:
97
+ st.empty()
98
+ model_output = onnx_segment_membrane(np.array(input), threshold)
99
+
100
+ fig2 = px.imshow(model_output[0], binary_string=True, labels=dict(x="Segmentation Map"))
101
+ fig2.update_layout(margin=dict(l=0, r=0, b=0, t=0))
102
+ col2.plotly_chart(fig2, use_container_width=True)
103
+
104
+ fig3 = px.imshow(model_output[1], binary_string=True, labels=dict(x="Centroid Map"))
105
+ fig3.update_layout(margin=dict(l=0, r=0, b=0, t=0))
106
+ col3.plotly_chart(fig3, use_container_width=True)
images/.DS_Store ADDED
Binary file (6.15 kB). View file
 
images/cell_membrane_segmentation_examples/Example_1.png ADDED
images/cell_membrane_segmentation_examples/Example_2.png ADDED
requirements.txt ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==4.1.0
2
+ argon2-cffi==20.1.0
3
+ astor==0.8.1
4
+ async-generator==1.10
5
+ attrs==21.2.0
6
+ backcall==0.2.0
7
+ base58==2.1.0
8
+ bleach==3.3.1
9
+ blinker==1.4
10
+ cachetools==4.2.2
11
+ certifi==2021.5.30
12
+ cffi==1.14.6
13
+ charset-normalizer==2.0.3
14
+ click==7.1.2
15
+ debugpy==1.4.1
16
+ decorator==5.0.9
17
+ defusedxml==0.7.1
18
+ entrypoints==0.3
19
+ flatbuffers==2.0
20
+ gitdb==4.0.7
21
+ GitPython==3.1.18
22
+ idna==3.2
23
+ imutils==0.5.4
24
+ ipykernel==6.0.3
25
+ ipython==7.25.0
26
+ ipython-genutils==0.2.0
27
+ ipywidgets==7.6.3
28
+ jedi==0.18.0
29
+ Jinja2==3.0.1
30
+ joblib==1.0.1
31
+ jsonschema==3.2.0
32
+ jupyter-client==6.1.12
33
+ jupyter-core==4.7.1
34
+ jupyterlab-pygments==0.1.2
35
+ jupyterlab-widgets==1.0.0
36
+ MarkupSafe==2.0.1
37
+ matplotlib-inline==0.1.2
38
+ mistune==0.8.4
39
+ nbclient==0.5.3
40
+ nbconvert==6.1.0
41
+ nbformat==5.1.3
42
+ nest-asyncio==1.5.1
43
+ notebook==6.4.0
44
+ numpy==1.21.1
45
+ onnxruntime==1.8.1
46
+ opencv-python-headless==4.5.3.56
47
+ packaging==21.0
48
+ pandas==1.3.1
49
+ pandocfilters==1.4.3
50
+ parso==0.8.2
51
+ pexpect==4.8.0
52
+ pickleshare==0.7.5
53
+ Pillow==8.3.1
54
+ plotly==5.1.0
55
+ prometheus-client==0.11.0
56
+ prompt-toolkit==3.0.19
57
+ protobuf==3.17.3
58
+ ptyprocess==0.7.0
59
+ pyarrow==5.0.0
60
+ pycparser==2.20
61
+ pydeck==0.6.2
62
+ Pygments==2.9.0
63
+ pyparsing==2.4.7
64
+ pyrsistent==0.18.0
65
+ python-dateutil==2.8.2
66
+ pytz==2021.1
67
+ pyzmq==22.1.0
68
+ requests==2.26.0
69
+ scikit-learn==0.24.1
70
+ scipy==1.7.0
71
+ Send2Trash==1.7.1
72
+ six==1.16.0
73
+ smmap==4.0.0
74
+ streamlit==0.85.1
75
+ tenacity==8.0.1
76
+ terminado==0.10.1
77
+ testpath==0.5.0
78
+ threadpoolctl==2.2.0
79
+ toml==0.10.2
80
+ toolz==0.11.1
81
+ tornado==6.1
82
+ traitlets==5.0.5
83
+ tzlocal==2.1
84
+ urllib3==1.26.6
85
+ validators==0.18.2
86
+ watchdog==2.1.3
87
+ wcwidth==0.2.5
88
+ webencodings==0.5.1
89
+ widgetsnbextension==3.5.1
scaler.gz ADDED
Binary file (507 Bytes). View file
 
setup.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ mkdir -p ~/.streamlit/
2
+ echo "\
3
+ [server]\n\
4
+ headless = true\n\
5
+ port = $PORT\n\
6
+ enableCORS = false\n\
7
+ \n\
8
+ " > ~/.streamlit/config.toml