Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
|
@@ -8,4 +8,169 @@ pinned: false
|
|
| 8 |
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
+
<p align="center">
|
| 12 |
+
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/banner_1.jpg">
|
| 13 |
+
</p>
|
| 14 |
+
|
| 15 |
+

|
| 16 |
+
[](https://codecov.io/gh/DevoLearn/devolearn)
|
| 17 |
+
[](https://github.com/DevoLearn/devolearn/issues)
|
| 18 |
+
[](https://github.com/DevoLearn/devolearn/graphs/contributors)
|
| 19 |
+
[](https://github.com/DevoLearn/devolearn/commits/master)
|
| 20 |
+
[](https://openworm.slack.com/archives/CMVFU7Q4W)
|
| 21 |
+
[](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
## Contents
|
| 25 |
+
|
| 26 |
+
* [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks)
|
| 27 |
+
* [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo)
|
| 28 |
+
* [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan)
|
| 29 |
+
* [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo)
|
| 30 |
+
* [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn)
|
| 31 |
+
* [Links to datasets](https://github.com/DevoLearn/devolearn#links-to-datasets)
|
| 32 |
+
* [Contact us](https://github.com/DevoLearn/devolearn#authorsmaintainers)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### Installation
|
| 36 |
+
```python
|
| 37 |
+
pip install devolearn
|
| 38 |
+
```
|
| 39 |
+
### Example notebooks
|
| 40 |
+
<p align="center">
|
| 41 |
+
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/nodes_matrix_long_smooth.gif" width = "40%">
|
| 42 |
+
<img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/3d_node_map.gif" width = "40%">
|
| 43 |
+
</p>
|
| 44 |
+
|
| 45 |
+
* [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb)
|
| 46 |
+
|
| 47 |
+
### Segmenting the Cell Membrane in C. elegans embryo
|
| 48 |
+
<p align="center">
|
| 49 |
+
<img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/pred_centroids.gif" width = "80%">
|
| 50 |
+
</p>
|
| 51 |
+
|
| 52 |
+
* Importing the model
|
| 53 |
+
```python
|
| 54 |
+
from devolearn import cell_membrane_segmentor
|
| 55 |
+
segmentor = cell_membrane_segmentor()
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
* Running the model on an image and viewing the prediction
|
| 60 |
+
```python
|
| 61 |
+
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
|
| 62 |
+
plt.imshow(seg_pred)
|
| 63 |
+
plt.show()
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
* Running the model on a video and saving the predictions into a folder
|
| 67 |
+
```python
|
| 68 |
+
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
* Finding the centroids of the segmented features
|
| 72 |
+
```python
|
| 73 |
+
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
|
| 74 |
+
plt.imshow(seg_pred)
|
| 75 |
+
plt.show()
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
* Saving the centroids from each frame into a CSV
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
|
| 82 |
+
df.to_csv("centroids.csv")
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
### Segmenting the Cell Nucleus in C. elegans embryo
|
| 86 |
+
<p align="center">
|
| 87 |
+
<img src = "https://github.com/Mainakdeb/devolearn/blob/master/images/nucleus_segmentation.gif" width = "60%">
|
| 88 |
+
</p>
|
| 89 |
+
|
| 90 |
+
* Importing the model
|
| 91 |
+
```python
|
| 92 |
+
from devolearn import cell_nucleus_segmentor
|
| 93 |
+
segmentor = cell_nucleus_segmentor()
|
| 94 |
+
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
* Running the model on an image and viewing the prediction
|
| 98 |
+
```python
|
| 99 |
+
seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg")
|
| 100 |
+
plt.imshow(seg_pred)
|
| 101 |
+
plt.show()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### Generating synthetic images of embryos with a Pre-trained GAN
|
| 105 |
+
<p align="center">
|
| 106 |
+
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/generated_embryos_3.gif" width = "30%">
|
| 107 |
+
</p>
|
| 108 |
+
|
| 109 |
+
* Importing the model
|
| 110 |
+
```python
|
| 111 |
+
from devolearn import Generator, embryo_generator_model
|
| 112 |
+
generator = embryo_generator_model()
|
| 113 |
+
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
* Generating a picture and viewing it with [matplotlib](https://matplotlib.org/)
|
| 117 |
+
```python
|
| 118 |
+
gen_image = generator.generate()
|
| 119 |
+
plt.imshow(gen_image)
|
| 120 |
+
plt.show()
|
| 121 |
+
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
* Generating n images and saving them into `foldername` with a custom size
|
| 125 |
+
|
| 126 |
+
```python
|
| 127 |
+
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
### Predicting populations of cells within the C. elegans embryo
|
| 133 |
+
|
| 134 |
+
<p align="center">
|
| 135 |
+
<img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/resnet_preds_with_input.gif" width = "60%">
|
| 136 |
+
</p>
|
| 137 |
+
|
| 138 |
+
* Importing the population model for inferences
|
| 139 |
+
```python
|
| 140 |
+
from devolearn import lineage_population_model
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
* Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
|
| 144 |
+
```python
|
| 145 |
+
model = lineage_population_model(device = "cpu")
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
* Making a prediction from an image
|
| 149 |
+
```python
|
| 150 |
+
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
* Making predictions from a video and saving the predictions into a CSV file
|
| 154 |
+
```python
|
| 155 |
+
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False)
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
* Plotting the model's predictions from a video
|
| 159 |
+
```python
|
| 160 |
+
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False)
|
| 161 |
+
plot.show()
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
## Links to Datasets
|
| 165 |
+
| **Model** | **Data source** |
|
| 166 |
+
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 167 |
+
| Segmenting the cell membrane in C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) |
|
| 168 |
+
| Segmenting the nucleus in C. elegans embryo | [C. elegans Cell-Tracking-Challenge dataset](http://celltrackingchallenge.net/3d-datasets/)
|
| 169 |
+
| Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/)
|
| 170 |
+
|
| 171 |
+
## Authors/maintainers:
|
| 172 |
+
* [Mayukh Deb](https://twitter.com/mayukh091)
|
| 173 |
+
* [Ujjwal Singh](https://twitter.com/ujjjwalll)
|
| 174 |
+
* [Dr. Bradly Alicea](https://twitter.com/balicea1)
|
| 175 |
+
|
| 176 |
+
Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)!
|