Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,23 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import matplotlib.colors as mcolors
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Define grouped categories
|
11 |
grouped_mapping = {
|
@@ -16,51 +29,31 @@ def process_mask(file, category_to_hide):
|
|
16 |
"Skin (Hands, Feet, Body)": [4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 21] # Hands, Feet, Arms, Legs, Torso
|
17 |
}
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
"Clothes": "magenta",
|
23 |
-
"Face": "orange",
|
24 |
-
"Hair": "brown",
|
25 |
-
"Skin (Hands, Feet, Body)": "cyan"
|
26 |
-
}
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
for category, indices in grouped_mapping.items():
|
32 |
-
if category == category_to_hide:
|
33 |
-
continue # Skip applying colors for the selected category to hide
|
34 |
-
for idx in indices:
|
35 |
-
mask = data == idx
|
36 |
-
rgb = mcolors.to_rgb(group_colors[category]) # Convert color to RGB
|
37 |
-
grouped_mask[mask] = [int(c * 255) for c in rgb]
|
38 |
-
|
39 |
-
# Save the mask image
|
40 |
-
fig, ax = plt.subplots(figsize=(6, 6))
|
41 |
-
ax.imshow(grouped_mask)
|
42 |
-
ax.axis("off")
|
43 |
-
plt.tight_layout()
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
|
48 |
-
plt.close()
|
49 |
|
50 |
-
return
|
51 |
|
52 |
# Define Gradio Interface
|
53 |
demo = gr.Interface(
|
54 |
-
fn=
|
55 |
inputs=[
|
56 |
-
gr.File(label="Upload
|
57 |
gr.Radio([
|
58 |
"Background", "Clothes", "Face", "Hair", "Skin (Hands, Feet, Body)"
|
59 |
], label="Select Category to Hide")
|
60 |
],
|
61 |
-
outputs=gr.Image(label="
|
62 |
title="Segmentation Mask Editor",
|
63 |
-
description="Upload a
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|
|
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import matplotlib.colors as mcolors
|
5 |
+
from gradio_client import Client, handle_file
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
from io import BytesIO
|
9 |
|
10 |
+
def get_segmentation_mask(image_url):
|
11 |
+
client = Client("facebook/sapiens-seg")
|
12 |
+
result = client.predict(image=handle_file(image_url), model_name="1b", api_name="/process_image")
|
13 |
+
return np.load(result[2]) # Result[2] contains the .npy mask
|
14 |
+
|
15 |
+
def process_image(image, category_to_hide):
|
16 |
+
# Convert uploaded image to a PIL Image
|
17 |
+
image = Image.open(image.name).convert("RGB")
|
18 |
+
|
19 |
+
# Save temporarily and get the mask
|
20 |
+
image.save("temp_image.png")
|
21 |
+
mask_data = get_segmentation_mask("temp_image.png")
|
22 |
|
23 |
# Define grouped categories
|
24 |
grouped_mapping = {
|
|
|
29 |
"Skin (Hands, Feet, Body)": [4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 21] # Hands, Feet, Arms, Legs, Torso
|
30 |
}
|
31 |
|
32 |
+
# Apply the mask over the original image
|
33 |
+
image_array = np.array(image)
|
34 |
+
masked_image = image_array.copy()
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Black out selected category
|
37 |
+
for idx in grouped_mapping[category_to_hide]:
|
38 |
+
masked_image[mask_data == idx] = [0, 0, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Convert back to PIL Image
|
41 |
+
result_image = Image.fromarray(masked_image)
|
|
|
|
|
42 |
|
43 |
+
return result_image
|
44 |
|
45 |
# Define Gradio Interface
|
46 |
demo = gr.Interface(
|
47 |
+
fn=process_image,
|
48 |
inputs=[
|
49 |
+
gr.File(label="Upload an Image"),
|
50 |
gr.Radio([
|
51 |
"Background", "Clothes", "Face", "Hair", "Skin (Hands, Feet, Body)"
|
52 |
], label="Select Category to Hide")
|
53 |
],
|
54 |
+
outputs=gr.Image(label="Masked Image"),
|
55 |
title="Segmentation Mask Editor",
|
56 |
+
description="Upload an image, generate a segmentation mask, and select a category to black out."
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|